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EXECUTIVE SUMMARY

The present development of fault diagnosis theory is in response to the

proliferation of Large circuits and systems whose complexity precludes the

use of manual methods of trouble shooting. Although great success has been

achieved in the automation of fault analysis for digital systems, the

automated diagnosis of analog circuits and systems remains a difficult

problem.

The fault diagnosis method discussed in this volume of the progress

report is one part of a two phase automated test philosophy. The complete

diagnosis process consists of D.C. testing (Volume I of the report) which

considers the nonlinear aspects of the system (e.g. bias point determination

and muLtifrequency testing applied to the system Linearized about its

operating point. The former is most suited to isolating hard faults

(catastrophic changes in parameter values such as shorts and opens) while

the Latter is more suited to the determination of more subtle variations in

component behavior. Although this volume discusses only the muLtifrequency

testing, remember that both testing methods must be combined to make a

viable approach to the analog fault analysis problem.

The various methods of fault analysis by "simulation after test"

appearing in the recent Literature have essentially two distinct

2 orientations. The philosophy of the first approach, is to equate

measurement data with a nonlinear function of ALL pertinent parameter values
4

of the system. This is in contrast to the computationaLLy simpler method of

Limiting the number of faults allowed, so that the resulting equations are

Linear. Our research focuses on the former approach for the following

reasons. System component models are often generated by linearizing the
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actual components behavior about an operating point. This Linearization of

an actual component often means replacing it with a network of idealized

components, each characterized by a parameter value which depends on the

operating point. A good example of this is a transistor whose Linear modeL

is generally a dependent source interconnected with several resistors and

capacitors. If such an operating point is incorrect but is not identified

conclusively by the D.C. analysis, it is possible for all the parameters in

the model which are affected by that bias point to be faulty. In this case

the a priori assumption that the number of faults is small is not

appropriate. ALso a focus on complete parameter identification is useful in

the role of failure prediction. Periodic analysis which is capable of

identifying all component values allows minor variations of each component's

behavior to be tracked over time and its failure predicted.

With the above focus in mind this report introduces the CCM (component

connection model) and describes two approaches to muLtifrequency diagnosis:

the composite system transfer function approach and the tableau approach.

The two approaches are evaluated theoretically and numerically with the

tableau approach shown to be far superior. In the context of the tableau

approach a diagnosabiLity set is developed and upper and Lower bounds on the

number of test frequencies necessary to conduct a diagnosis are given.

The report also includes investigations of various other aspects of the

tableau fault diagnosis equations. In particular, a detailed investigation

of the quadratic nature of the tableau equations is presented. By

exploiting this quadratic structure superior numerical algorithms for the

solution of the diagnosis equationstarise. Examples of the above techniques

given throughout the report, serve to Illustrate the utility of the tableau

approach.
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CHAPTER 1

THE COMPONENT CONNECTION MODEL

1. Introduction

Underlying the fault diagnosis investigations which follow in

subsequent chapters is an interconnected system model called the

ccmponent connection model, abbreviated CCM (1,2,33. The purpose of

this coapter is to introduce the notation and modelling philosophies of

the CCM.

Two sets of equations characterize the CCM: (i) component

characteristic equations and (ii) interconnection or topological

equations. Basically all system models are equivalent. The differences

Lie in'the way the system information is displayed. The philosophy

behind the CCM is the separate descriptions of the component dynamics

and system topology. Such descriptions result in Large numbers of

equations and unknowns. In matrix form the equations are very sparse

and hence admit the use of sparse matrix storage and manipulation

techniques [43. For Large systems, storage requirements are often Lower

than smaller non-sparse composite system representations. In some

applications the use of the CCM has produced dramatic improvements in

the use of computing resources. The most notable example is the MARSYAS

program which used the CCM in a Space Shuttle engine modeL. The program

performed the simulation 26 times faster than previous simulations used

by NASA C53.

1
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2. CCR Basics

Figure 1 shows a Linear system consisting of N components. The

components are shown explicitly as numbered blocks. The section labeled

interconnections contains only the information describing how the

components are connected to each other and to the outside world.

The system input is the vector u and the system output is the

vector y. Each component of the system has an input and output vector

a. and b. respectively (i1,2,...,N). The component inputs and outputs

will often be handled collectively so for convenience define:

a = col(ala2,...,aN) (2.1a)

b = co(b Ib 2 ..., N (2.1b)

The vectors a and b are called the composite component input and

composite component output vectors. The composite component output, b,

is related to the composite component input, a, via the component

characteristics. The composite component input, a, is related to both b

and u ('the system input) through the interconnection or topological

equations. Finally, the system output, y, depends on the composite

component output, b, and the system input u.

3. The Component Equations

Since the components are Linear they can be characterized by a

transfer function in the frequency domain. Let the transfer function

matrix for component i be Z (s,r1 ) where:

i) s is the Laplace transform variable

(ii) r1 Is a vector parameter which characterizes component i
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INTERCONNECTIONS

Figure 1. Linear system with N components.
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The object of the fault diagnosis procedure developed in this paper wiLL

be to identify (diagnose) the value of r- (i-1,2,...,N).

Let a1 (s) and b(s) be the Laplace transforms of the component

input and output vectors. Then the component characteristic equation

for component i is:

bi(s) = Zi(s,ri)ai(s) (3.1)

Define:

r = col(rl,r2,...,rN) (3.2)

Z(s,r) = bLock-diag Z1 (s,r1 ),z2(s,r2),...,Zn(s,rn)] (3.3)

The characteristic relation for all the components can now be written

compactly as

b(s) = Z(s,r)a(s) (3.4)

where a(s) and b(s) are the Laplace transforms of the composite

component input and composite component output vectors. The matrix

Z(sr) is called the composite component transfer function matrix. It

is sparse due to its block diagonal structure.

Figure 2 illustrates the relationship of the composite component

transfer function to the entire system.

Ft
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U(S)a( ZS~r)b~s)Y(S)

INTERCONNECTION

Figure 2. Illustration of the relationship of the composite
transfer function to the entire system.
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4. The Connection Equations

The connection equations model the constraints which result when

the components are interconnected. These constraints are linear and

algebraic representing conservation Laws such as Kirchoff's current and

voltage laws. Let u(s) be the Laplace transform of the system input

vector and y(s) the Laplace transform for the system output vector.

From Figure 2 note that the inputs to the interconnections are u(s) and

b(s) and the outputs from the interconnections are a(s) and y(s). This

leads naturally to the following form for the connection equations:

a(s) = L1lb(s) + L12u(s) (4.1a)

y(s) = L21 b(s) + L 2 2 u(s) (4.1b)

where the Lij are matrices whose dimensions conform to the given vector

quantities. The Lij are called the connection matrices and they are

generally very sparse. This occurs because most circuit elements and/or

subsystem blocks have physical connections to only a few "neighbors".

Figure 3 shows the system schematic further updated to portray the role

of the connection matrices.

A small example described in the next section best summarizes the

above development.

5. A CCM Example

Figure 4 is a circuit consisting of three components, two resisters

and a capacitor. The components are shown separated from their

positions in the circuit to emphasize the difference between the

connection equations and the component equations. The circuit input is



r
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I

L 22
F 3rt

Figure 3. Block diagram representation of the CCM equations.
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u and the output is y =yl,y2]
t. Using the usual resistor, capacitor

equations as component models produces the following composite component

transfer function matrix equation:

[b (S)] R1  0 0(S

1b (S) 0 1 4 0 Ia (S (5.1)
Lb3(S 0 1/R La3 ()

Note that this equation is independent of the connections. It was

derived by rekating the component outputs and inputs through the

components dynamics.

Next consider the connections. By using KVL and KCL on the

circuit, the following equations result:

a3(s) 0- b3(s)

12 b(s)]+ u(s) (5.2b)

* [Z(SJ L0  1J

!a

* Note that the interconnection equations did not require any knowLedge of

the actual components dynamics.

Most notable in the example is the large number of zero entries in

the Z(s,r) and L1 j matrices. In fact the number of non-zero entries in

the system matrices usually increases as the order of the number of



12

components, (ie Linearly) resulting in extremely sparse matrices for

Large systems.

6. Simulation in the Frequency Domain

As will be seen the objective of fault diagnosis is to identify the

parameters of a system by observing the systems response (outputs) to a

given stimuli (system input). EssentialLy this process is the inverse

of the system simulation problem wherein system parameters and inputs

are given with the goal of numerically computing system outputs. Since

the CCM leads to a highly efficient method for system simulation, it

appears reasonable to suppose that its use in the fault diagnosis

problem may share some of the same advantages. Thus we present a brief

description of the frequency domain simulation problem as an aid to

understanding the fault diagnosis discussions to follow.

Often, frequency domain simulations proceed by first constructing a

composite system transfer function matrix S(s) and then solving directly

for the system output y(s) according to

y(s) = S(s)u(s) (6.1)

It is possible to compute the composite system transfer function matrix

explicitly in terms of the CCM matrices as follows:

S(s) = L22 + L21 (I-Z(s,r)L1 1) Z(s,r)L 12  (6.2)

where the inverse is taken as an element in the field of rational

matrices C1,93. But this is not the most efficient way to compute y(s)

using the CCM. Instead equations 3.4 and 4.1 are combined to form a

sparse tableau given in equation 6.3
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[(s,r) -I ira(s) 0
-I L11] Lb 8)J L 12u (sJ (6.3a)

y(s) = L21b(s) + L22u(s) (6.3b)

The solution of the sparse tableau equations of 6.3a are

substituted into 6.3b to obtain the system output. The advantage of

this method for system simulation comes from the fact that the tableau

can be solved using sparse matrix technique. The tableau matrix

IM(s,r) = _ L

is very sparse since alL its component matrices are highly sparse.

Therefore only the information on the nonzero entries need be stored.

The solution proceeds by using an LU-decomposition algorithm which

factors M(s,r) as L(s,r)U(s,r) where L(s,r) is lower triangular and

U(sr) is upper triangular. in general the matrices L(s,r) and U(s,r)

2are both sparse and can be stored in the same space allocated to the

storage of M(s,r).

Solution of 6.3 at a single frequency is most efficiently done by

solving

L(sr)X = L12u( s

by forward substitution and

4
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U(s,r) Lb(s)J X

by back substitution. ALL operations are efficiently executed using

sparse matrix techniques E43. Computations over a range of frequencies,

s = jWW, 1 <  < 2, can also proceed efficiently via a continuation

algorithm C93.

As an example equation 6.4 presents the tableau equations for the
1 '1

circuit of figure 4, where = and 63 = -

61 0 0 -1 0
al (s)7 0

0 - 0 0-1 0

0 0SO:2 a : ;';-u ) (.40 G3 0 0 -1 83(s) I

= (6.4)
-1 0 0 0 -1 0 bI (s) -u(s),

0 -1 o 1 0 -1 b2 (s) 0

0 0 -1 0 1 0 b3(s) 0

7. Summary

In the CCM context the equations describing the components and the

equations describing their interconnections remain separate and

distinct. It is therefore possible to distinguish the effect of the

component dynamics from the effect of their topology. This wilt prove

to be an extremely desirable feature of the CCM when applied to the

fault diagrams problem.

The use of the CCR for system simulation has resulted in fast and

numerically well conditioned computations when sparse matrix techniques



1 15
are empLoyed C4,53. It is not unreasonabLe to believe that similar

advantages are waiting to be achieved by the use of the CCN in the fault

diagnosis probtem.
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CHAPTER 2

MULTIFREQUENCY FAULT DIAGNOSIS (THE COMPOSITE TRANSFER FUNCTION APPROACH)

1. Introduction

This chapter has two objectives:

i) Introduce the Multifrequency Fault Diagnosis problem; and

(ii) Highlight one of the two major methods for dealing with the

diagnosis problem, namely the Composite Transfer Function

Approach.

The following example illustrates the idea of multifrequency fault

diagnosis and motivates a formal definition of the problem:

Suppose one desires to determine the values of R and L in the

circuit in figure 5, but direct measurements of the components are

prohibited.

Let the available data be the measurement of the voltage across the

series RL impedance, y(s), and the known input current, u(s). The

composite system transfer function of the circuit is:

y(s) = (R + sL)u(s) (1.1)

Suppose i) s1 is a real test frequency; (ii) u(s1 ) = 1; and (iii) the

measured output is y, = y(sl); where the superscript M means "measured".

The evaluation of equation 1.1) at s = sI with the measured output y,

produces

____ I.
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U(S) y(s)

L-

Figure 5.Circuit used for motivation of
multifrequency measurements.
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y: R + slL (1.2)

where R and L are the unknowns. Clearly the data at sI is insufficient

to determine the values of R and L; however performing a second

measurement at test frequency s2 s1 yieLds the matrix equation

(1 .3)

Equation (1.3) uniquely determines R and L provided sI and s are

distinct. This simple example illustrates the use of multifrequency

testing to identify circuit parameters. With this example in mind the

general fault diagnosis problem can be formulated as follows.

Given the following information:

(i) a linear network appropriately modeled containing N

components, each component characterized by a parameter, ri,

i=a,2,. . .oN;

(ii) a set of test inputs; and

(iii) a set of test outputs

determine the parameters, ri, i=1,2,...,N. As the simple example

illustrated measurements at a single test frequency may be insufficient

to determine all the parameters. Thus it is necessary to make a series

of measurements at enough different test frequencies to provide

sufficient data to uniquely specify all parameters.

There are two major approaches to multifrequency fault diagnosis

for Linear systems based on the use of the CCM:
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i) The Composite Transfer Function Approach developed by Sen and

Saeks t6] and

(ii) The Tableau Approach developed by DecarLo and Gordan E73.

The purpose of this report is to continue the development of the

multifrequency fault diagnosis theory in the context of the tableau

approach. A comparison of the two approaches will best illustrate the

motivation for this choice. For this reason the next four sections

present a summary of the composite transfer function approach as well as

an example of its use.

2. The Fault Diagnosis Equations (Composite Transfer Function Approach)

Suppose a linear system has the transfer function matrix

representation S(s,r) where r is the circuit/system parameter vector,

i.e. r = coL(ri,r 2,...,rn). The diagnosis of a linear circuit/system

begins by measuring S(s,r) at a set of q distinct real test frequencies,

s = si' i=1,2,...,q. The measured data has the form [63:

CoL IS (sl, r),S(s 2, r),...,S(sq, r)]

The measuremen% in this form is a matrix valued function of the

parameter vector, r. It is much more convenient to convert it to a

vector valued function through the use of the "vec" function [83 of a

matrix defined as:
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Ai

A 2
vecCA) =(2.1)

A
Lpi

where Mi A is an mxp matrix

(ii) A. is the ith column of A

Ciii) vec(A) has dimensions mpxl

The composite transfer function matrix S~s.,r) [9J can be expressed

explicitly in terms of the CCM matrix as:

S~ir) L22+L 21(I-Z~si,r)Lll)- U~S ir)L 12  (2.2)

i = 1,2,...,q. Let M be the vector of all the measured data definf~d

precisely by:

vec[S~sl,r)]

vecES (s2, 03

M (2.3)

LvectS (sqir)3)

The measurement 14 can also be expressed in terms the CCM matrices

directly using equation 2.2 and the foLowing identity (8,103:

vecEX Y Z3 = EZ~ t X3 vectY3 (2.4)

where Mi X, Y and Z are any appropriately dimensional matrices;
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(ii) the superscript t denotes matrix transpose; qnd

(iii) 0 is the "Kronecker product," i.e. given a pxk matrix A and

a mxq matrix B their Kronecker product is the pmxkq matrix

113:

all B . . alk B

a21 B

A B e * (2.5)

a B . . a BP1 pk

Using equation 2.2 and 2.4 in equation 2.3 produces the fault diagnosis

equations:

vec EL3+] t 0 L (I-Z(s1, r)L11 )-1vec [Z(slr)]vec [S(Sljr)] v L22] +[12 21 L21

,cS(s2 r)2 vec CL22 ] + l L21 (I-Z(s2, r)Lll)
1)vec CZ(s 2,r)3

A - _A f(r)

vec ES(sqr)3 vec CL22] + EL 2 @ L21 I-ZSkr)L11) -1]vec ,Z(sqr)j

(2.6)

where M is the measurement vector and f(r) is an explicit nonlinear

vector valued function of r. The fault diagnosis problem amounts to

*solving:

F(r) =M - f(r) = ( (2.7)

where 0 denotes the "zero" vector.
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As mentioned earlier the use of multiple test frequencies is

necessary since for most practical cases a measurement of S(s,r) at one

test frequency will not provide sufficient information to determine r.

Notice also that the composite transfer function approach requires the

computation of the composite transfer function matrix explicitly (as in

equation 2.2). For Large systems this is no easy matter. Finally note

that the fault diagnosis equations are nonlinear. Furthermore, although

it is not readily apparent from equation 2.6, the polynomial order of

f(r) increases in proportion to the size of the system. A small example

at the end of this chapter will illustrate these points.

3. Measure of Solvability

Two key questions concerning the fault diagnosis equations F(r) 0

are:

i) Does a solution exist?

ii) If a solution exists to what extent is it specified by M?

First consider the question of existence. Recall that M represents

measurements made on an actual system under test. If the model used to

darive the function F~r) is assumed to be precise it should be possible

to simulate the actual system mathematically by using y =f Cr). Since

any behavior of the actual system can be simulated by f(e), there must

be some value r* for which f~r*) - M = F~r) = 0, provided M has no

measurement error. The parameter value r* represents at Least one

possible solution to the equation F~r) = 8. This discussion of the

existence of a solution to the fault diagnosis equation points out

possible pitfalls which should be considered in the actual computation

of a solution. In general there will be some error associated with the
L
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measurement M. Furthermore the model used to derive the function f(e)

used for system simulation may not be exact. It is therefore possible

for the fault diagnosis equations to be inconsistent. For the

subsequent discussion, however, the existence of a solution to F(r) = 0

is assumed.

Now that F(r) = 0 has a solution, to what extent is that solution

specified by the measurement, M? Under ideal circumstances r is

uniquely specified but because the fault diagnosis equations are

nonlinear multiple solution may exist. In spite of this it is stilt

possible for M to completely specify the desired solution if the region

of consideration is restricted so that the desired root is an isolated

solution. The solution, r , is an isolated solution if there is a

neighborhood of r* which contains no other solution of N-F(r) = 0 [193.

By a neighborhood of r we mean a set of points (rl Ir*rl12

some r > 0, where 111jJ2 denotes the usual Euclidean norm.

When is the desired solution "isolated" and if it is not isolated

how much information does the measurement, M, provide about the

solution? Saeks and Sen 16) answer these questions by defining a

parameter called the "measure of solvability". The reasoning behind the

measure of solvability is based on the inverse function theorem which

requires the following three definitions (193:

Definition 1

The mapping F:DC Rn * Rm is Frechet differentiable at x e int(D)

(interior of D) if there is a linear operator A: R n RM such that
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tim (1/11hl1 2 )lIF(x+h) - F(x) - AhllI = 0 (3.1)
h~e

Note: The usual representation of this derivative is the Jacobian

matrix. The derivative of F(*) will therefore be denoted by the matrix

Definition 2

A mapping F: D C Rn * Rn is a homeomorphism of D onto F(D) if F is

one-to-one on D and F and F-1 are continuous on D and F(D) respectively.

Definition 3

The mapping F: D C Rn , Rn is a local homeomorphism at x e int(D)

if there exist open neighborhoods U and V of x and F(x) respectively,

such that the restriction of F to V is a homeomorphism between U and V.
*

Clearly the solution, r to the equation F(r) = 0 will be isolated

if F(r) is a local homeomorphism at r*. This is determined using the

following [193:

Inverse Function Theorem: Suppose that F: D C Rn * Rn has a Frechet

derivative, JF(.), in a neighborhood of x 0 int(D) which is continuous

at x0 and that JF(xo) is non-singular. Then F is a local homeomorphism

at xo.

With the inverse function theorem in mind define the measure of

solvability [63 of the fault diagnosis equation F(r) = 6 by

6(rO) 0 N - rank CJF(ro)3 (3.2)

where (i) N is the number of unknown parameters,

(ii) F: D C R
N . RN,

(lii) JF(a) is the NxN Jacobian Matrix of F, and
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(iv) r is a solution point.
0

In other words 6(ro) is the dimension of the nullspace of J F(r ). The

Inverse Function Theorem guarantees that when 6(r ) = 0 (J F(r o) is non-

singular) then r0 is an isolated solution. If 6(r 0) # 0 then the fault

diagnosis equations must be augmented with 6(r ) additional independent

constraints to guarantee that r is an isolated soLution of the0

augmented equations.

Given the form of the fault diagnosis equations in equation 2.6 the

Jacobian J F (r) is the following E6):

((I Lll(I-Z(s 1,r)Ll)l'Z(s1 ,r)]L 12 )
t 0 (L2 1 (I-Z(slr)L11 ) l))(dvec Z(sl,r)3/d;

{([I+L 11(I-Z(s2,r)L11 )'1Z(s 22r)3L12)t 0 (L21(I-Z(s2,r)L11 )1 ))(dvec Z(s2,r)l/dr

JF(r)

([CI+L11(I-Z(sqr)L11)'lZ(sqr)3L1 2 )t 0 (L2-(l-Z(sq 1)'l))C(devc Z(sqr)]/dr

(3.3)

It would appear from its definition that the measure of solvability

is a local property, that is it varies as the parameter values of a

given system vary. Saeks and Sen [6) show however that when Z(sor) is a

rational function of r, 6(r) is "almost constant" and can be

characterized by its generic value, 6. "Almost constant" means that

6(r) = 6 ( a constant) everywhere in Rn except possibly for some values

of r lying in an algebraic variety [6). An algebraic variety in Rn is

the intersection of the zero sets of a finite set of non constant
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R2  2-
polynomials n variables E93. For example in R the solution of y-x -0

is an algebraic variety. Imagine a function f(xy) that is constant

every where except along the locus of points described by y-x2=0. Such

a locus occupies "zero area" in the x-y-plane and it is therefore

appropriate to consider f(xy) to be "almost" constant. Consider Figure

6 which displays the Locus of the curve y-x2 0 in the x-y-plane. If the

intuitive idea of "area" (width x length) is used the curved Line of

figure 6 has zero thickness and consequently occupies zero area in the

plane.

4. Solution of the Fault Diagnosis Equations

Although many methods exist for the solution of nonlinear equations

the fact that an explicit form of the Jacobian of F(r) is known suggests

that the Taylor series expansion for F(r) might be useful for finding an

approximation to the solution point of F(r) = e. Let F: D CR N , RN and

suppose r = r is a solution point of F(r) = e and r is some known
0

value close to r . Express F(r*) as a Taylor series about the point r.

F(r*) = F(r ) + J (r )(r* - r ) + higher order terms (4.1)0 F 0 0

Since r* is a solution point, F(r*) = e. Ignoring the higher order

terms because of the closeness of r0 to r* produces the following

approximation:

a a F(r) + JF(ro)(r* - ro) (4.2)

This equation provides a means to estimate the value of r *. That

estimate is a natural choice for a new expansion point which suggests

the following iteration procedure:
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Figure 6. Locus of the curve y x 0 .



JF(r(k)) (r(k +l )  ) - Fr(k)) (4.3)

where r(k) is the "kth" estimate determined in the previous iteration

and r(k+1) is the current estimate to be calculated. This method is

called the Newton-Raphson iteration scheme and it converges reasonably

fast when r(0) = ro (the initial guess) is close to r* C12]. If ro is

not sufficiently close to the solution point it is possible for the

sequence of estimates to diverge. Navid and Willson propose an

algorithm based on the following theorem which alleviates this

divergence problem [133:

Global Convergence Theorem:

Let F: D C Rn . n be continuously differentiable and have a

nonsingular derivative F'(x) = JF(x) on the open set D, and assume there

exists x c D for which F(x*) 0 6. Then, given any x 0 D, there exist

a sequence 0k } such that the iterates

xk+l = xk A kF(xk)-I F(xk), k = 0,1,... (4.4)

converges to the point x*. Moreover, there exist m, depending on x°,

such that for k >m we may take Xk = 1; and hence achieve a faster rate

of convergence to x*.

The kk in this theorem diminishes the change between estimates and

stablizes the sequence of estimates. When the estimates are
sufficiently close to the solution then Ik becomes unity and equation

4.4 becomes the Newton-Raphson iteration step.

I
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5. Exampte

To iLustrate the use of the FauLt Diagnosis equations, appLy them

to the foLLowing circuit: The input is u =Vin and the output is

y Ul, V 0 3. The circuit CCM equations are

00

b 2(s) 10% a,(s)

b3 (S) 0 6 3 a 3(s) (5.1)

1 (s) (s)

a 2(s) 1 0 -1 0t b2s 0

a 3(s) [ 1 0 0 2(:) 0 Vin (5.2)

a (S) 0 0 0 0 b(S 1

b(s)7

b 4 (s)

The transfer function is

S(s,r) =L 2  + L21(I-Z(s,r)L~ )-Z(s,r)L1  (5.4)

222411
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-1

1 G1 0 I

[Ufl0§ C2  2SC 2  10
' HI

1 0 0 -G3  1 0 0 G3  [
0 0 0 1 G4

[Sc2 
( G +G

4  
+ G3 G1 + G364 + G1 G4

S (s, r) = 161
SC2+G3+G1l

G1

t
where r = (G1,C2,G3,G4) . Notice that the calculation of S(sr) using

the CCM matrix required the inversion of (I-Z(sr)Lll).

For each test frequency, s = s,. equating the transfer function

equation to its measurement yields two independent equations in four

unknowns. Hence two real test frequencies are both necessary and

sufficient to uniquely specify the four unknown parameters. A

discussion of the problem of test frequency selection will appear in a

Later chapter in the context of the tableau approach to fault diagnosis.

To solve for the unknown parameters choose two real test

frequencies s1 = 1 and s2 = 2. Suppose that the measured transfer

function values are:

S(1,r) = S(2,r) = (5.5)

This produces the following nonlinear vector fault diagnosis equation:
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1 2(G1+G4) +G13 G 34 14+ GG

i 2 1 +  3

;3 G1
C + G + 6T2 1 3
C2- F6r+63 =0 (5.6)

M F F(r) 7 2C2 (G1 +G64) + GIG3 + G3G4 +GIG

2C2 + G1 + G3
1

G

2C2 + G1 + 63

In this example the equations are quadratic but the order of the

equations increases in proportion to the size of the system.

To solve the above equation set up the Newton-Raphson iteration

scheme using the explicit form of the Jacobian.

((n) _(n) 2 G(n)2 G(n)2
C2  +3 1 G 1

((n) (n) (n) 2 C(n) (n) (n) 2 (C(n) (n) (n).2
(C2 +G1 +G3 ( 2 +G1 +G3 ) 2 +61 +G3

(n) (n) (n) (n)C +G3 -G1 -G1

(n) (n) (n) 2 (n) (n) (n) 2 --(n) -(n) _(n 2
(C2  +6I +G3 (2 +6I +63 (C2  +G1 +G3 )

(C(n) G(n) 2 (n)2 G(n)2
(C 2  +63 ) 2 1  I

(n) (n) (n) 2 (n) (n) n -(n) 2 n) -(n) (n))
(2C2  +

61 +63 (2C2  +61 +G3 ) (2C2 +61 +63

3(n) G(n) 2G(n) -G(n)c2  +3 10

(C(n) G(n) +G (n) 2 ---(n) -(n)+ (n) 2 -2 (n) -(n) _(n)2 0C2  + 1 (c 2  +61 +63 ) (2C2  +61 +63

L4
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G (n+l)- (n)11
1 - 1

(n+l )-C( n)

= n-F(r (n)) (5.7a)

3 3

G(n+l) 6 (n)
4 3

where

(n) _(n) -(n) (n) (n) (n) (n) -(n)Of2 (61 +64 )+G1 G3 +G3 G4 +G1 G4
_(n) _(n) -(n)

1.60 C2  +G1 +63

G(n)
1

.40 _(n) G(n) (n)(~)2 +61 +63

M-F(r ) = - (5.7b)2C~n) -(G(n) _G(n) - (n) G(n)+ (n 6(n)+ (n _G(n)

1.75 (G) +4 1 63 +63 64 1 64
2_(n) -(n) (n)
2 2  +1I 63

.25 G(n)
2

J(n) G(n) -(n)
2 +G1  +63

To start the iteration process choose an initial guess for r.

Normally the nominal (or design) values for the components will suffice.

The first choice for A n should be unity unLess it causes the estimates

to diverge. A straightforward check for this is to test the inequality

1iM-F(rln~'l)11 2 < IIM-Flr(n))11 2. Where 11.112 indicates the usual

EucLidean norm. If it is true continue the iteration process but if

false repeat the step with a new xn, calculating a new r (n+l) Navid

1 (n+l)and Willson E133 decrease xn by the factor 7until the r estimate
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satisfies the inequality test.

6. Disadvantages of the Transfer Function Matrix Approach

The example illustrates some shortcomings of the Composite Transfer

Function Approach which become significant when it is applied to large

systems. First the method requires the computation of the composite

transfer function matrix. This involves the inversion of (I-Z(s , r)L11)

for i=1,2...,q. Next, if an explicit expression for JF(r) is used in a

Newton Raphson iteration scheme then (I-Z(s,r)L11) must be inverted

symbolically. This is extremely cumbersome for even moderately sized

networks. Finally since the CCM matrix (the Li and Z(s,r)) appear

imbedded within the transfer function expression it is difficult to

analyze the effect that each has on the fault diagnosis equations. For

exampte test point selection is equivalent to choosing L21. It is

desirable to choose L21 to minimize 6 for a given system but this is not

an easy matter in the Composite Transfer Function context. The next

chapter will introduce the Tableau Approach to the fault diagnosis

problem. Although the Tableau Form of the Fault Diagnosis equations are

equivalent to those of the Composite Transfer Approach they are

formulated in a context which completely avoids the short comings listed

above.

* I
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CHAPTER 3

TABLEAU APPROACH TO MULTIFREQUENCY FAULT DIAGNOSIS

1. Introduction

The Tableau Approach to multifrequency fault diagnosis is

essentially the fault diagnosis problem developed in Chapter 2 recast in

the context of the component connection model tableau introduced in

Chapter 1. The rationale for this new approach is two fold. First, if

the use of the CCM frequency domain tableau permits the development of

highly efficient algorithms for simulating a systems behavior [9) it

should offer comparable advantages in the fault diagnosis problem which

can be thought of as simulation in reverse. In particular the tableau

approach to fault diagnosis should prove to be superior to the composite

transfer function approach discussed in Chapter 2.

Even more important than any computational advantages which the

tableau approach might offer is the additional insight into the nature

of the problem to be gained by this different perspective. The transfer

function matrix approach for example has offered little insight into

problems such as the selection of test points or choice of optimum test

frequencies. IntuitiveLy these issues center upon the individual

characteristics of each component in relation to how the components are

interconnected. In the CCM Tableau the component characteristic

equations and the connection equations remain separate. It is therefore

more reasonable to investigate the role each plays in the problem in
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this context rather than through a transfer function matrix where both

sets of equations are intermingled and hence indistinguishable. The

purpose of this chapter is to detail the development of the tableau

approach and to highlight its usefulness.

2. Development of the Fault Diagnosis Equations

The development of the fault diagnosis equations begin with the

frequency domain tableau which was introduced in equation 6.3 of Chapter

1. For reader convenience the tableau is repeated here in equation 2.1:

[ (sr) -1 a(s) 0_L < ,i : L1 u~ s) (2 .1a )
-1 L 1] [b( S) [-L,)u(s)]

y(s) = L21b(s) + L22u(s) (2.1b)

Recall that y(s) is the composite system output, u(s) is the composite

system input and b(s) and a(s) are the composite component outputs and

inputs respectively. Also recall that the components are characterized

by the parameter vector, r, via the composite component transfer

function matrix, Z(s,r) and that the Lij matrices describe the systems

interconnections.

Suppose that a test input, u(s) is applied to a circuit/system

characterized by equation 2.1 and that the output, yM(s) is observed.

The superscript "M" emphasizes the fact that this is a test measurement.

Apply the simulation procedure in reverse by putting yM (s) into the

output equation (equation 2.1b) and gathering known quantities together

to obtain:
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L 21 b(s) y C4 s) - L 22u (S) (2.2)

The only unknown in equation 2.2 is the composite component output

vector b(s). A closer took at the properties of L 1is necessary in

order to determine the nature of the solution to equation 2.2.

In any practical situation the number of system outputs is Less

than the number of component outputs. (Measurements at essentially

every point within a system makes the fault diagnosis problem trivial

but it is unfortunately seldom practical.) To be consistent with this

practical consideration, make the following assumption:

Assumption 1: For the nly xflb matrix L 211 where ny = number of outputs and

n b =dimension of b(s), n b > ny .

Furthermore it is reasonable to make a second assumption concerning

Assumption 2: The matrix L.1i has full row rank.

The reasoning to support assumption 2 is that any dependent row of

L 21corresponds to an output which can always be expressed as a Linear

combination of the inputs and the remaining outputs. As a diagnosis

measurement such an output provides no additional information about the

outputs means eliminating all dependent rows of L2,. The resulting L21

matrix must have independent rows.

To solve equation 2.2 note that assumption 2 insures that L 1has a

right inverse t143 and therefore a solution must exist. Unfortunately

assumption 1 implies that L 21 must have a non trivial null space and

therefore there are infinitely many solutions to equation 2.2. The

solution to equation 2.2 can be characterized in the following way (73:
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b(s) = L2R [yM(s) - L22u(s + t (2.3)bk1 k(s) Vk
k-l

where: i) L2  is any right inverse of L

ii) p is the dimension of the null space of L21,

iii) The set {v1,v2 ,...,v pI are basis vectors which span the

null space of L21,

iv) The set {a1,Q21 ...,'apI are arbitrary (and possibly

complex) functions of s.

With the aid of the following definitions:

V = Evllv21...Iv p3 (2.4)

a(s) = coLal(s)] (2.5)

b s) =L_' [y"'(s) - L22 ~) (2.6)

equation 2.3 becomes:

b(s) = b0 (S) + Va(s) (2.7)

The vector b o(s) can be thought of as a particular solution to

equation 2.2. The vector Va(s) on the other hand represents the null

space component of the general solution. In other words Va(s) can be

viewed as the ambiguity in determining b(s) given the input-output

measurement Eu(s), yM (s)3. The need for multiple test frequencies is to

resolve such ambiguity which is intrinsically present in any formulation

of the problem. Recall the simple example illustrated by figure 5 at

the beginning of Chapter 2, which could not be solved by using a single
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test frequency. The above deveLopment characterizes this "insolubiLity"

as the nulL space of the L21 matrix.

Since more than one test frequency wilL usuaLLy be required for

fauLt diagnosis, Let q be the number of test frequencies required.

Denote the test frequencies: s = si, i=l,2,...,q. The inverted output

equation (equation 2.7) becomes a famiLy of equations:

b(s) = b0 (si) + V(s i) i = 1,2,...,q (2.8)

Next substitute b(si) from equation 2.8 into the connection equations,

a(s) = L1 1b(s) + L12u(s), which is part of the tableau in equation 2.1a.

This provides

a(s = L11 [b(s i ) + VG(si)J + L12u(s) (2.9a)

a(s1 ) = L1 1bo(Si) + L2 1u(si) + L1 1Va(si) i = 1,2,...,q (2.9b)

Since the first two terms on the right hand side of equation 2.9b are

known, a(si) can also be written as the sum of a particular solution and

an ambiguity component:

a(s1) = ao(s1) + L1Va(si) i = 1,2,...,q (2.10)

where

ao(Sj) = L1 lbo(s i) + L21u(si) (2.11)

Now substitute equations 2.8 and 2.10 into the remaining part of the

tableau equation (component characteristic b(s)=Z(s,r)a(s)).

I.
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b ( s i ) + Va(s)= Z(si,r)[a(s i) + L1 lVa(s,)] i = 1,2,..,q (2.12)

The unknowns in equations 2.12 are r and a(sj), i=1,2,...,q. FinalLy

rewrite equation 2.12 in the following product form [73:

[I. VQ(s) + a (s1 1
[Z-Vsipr ..V ----- bo (s i =,,2,..,q (2.13)

The family of equations defined by equation 2.13 constitute the tableau

form of the fault diagnosis equations. Notice that this set of

equations does not require the computation of the composite transfer

function matrix. The nonlinear component of these equations are the

terms Z(si,r)L1Va(si). The order of this nonlinearity does not

increase as the size of the system increases. In fact for systems where

the components have the form Zi(sr i) = riZi(s) the equations are

quadratic regardless of system size. Further discussion of these points

follows in a Later chapter.

3. Solution of the Fault Diagnosis Equations

The product form of equation 2.13 Lends itself to the following

compact characterization of the fault diagnosis equations [73:

'fl(r)gll(al)-01

F(x) = .= (3.1)

fM)gq (a)-B

where (M) = a(s )
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4(ii) x cL

(iii) fi (r) = (Z(sir)I-VJ

*I- 01 I

(v) 8. = b 0(s.)

The objective is to find the value of x for which F(x) = * One

method is to appLy the Newton-Raphson scheme introduced in the previous

chapter. In the case of the tableau form the iteration step is:

(k) X (k.1) - x Wk) F(x (k)) (3.2)

where Mi x Wk is the k-th estimate of the root

and (ii) J is the Jacobian of F(.)

As a resutt of the product structure of equation 3.1 the Jacobian

has a sparse elegant structure E73:

f~r)(ci1 ____ (fo 0
-1

ag2-2

J (x)(3.3)

fq Sm qq Or q -q

where
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S(r) -. () = Z(si,r) L,, V V (3.a)
- -1

and

1f(r) gi1.( V a + a(sI I (3.4b)
3r) Zi s si r) ILI I -t o

• - sior) V a. ao(si)

ag.
Note that f (r)- -(.s) is independent ofi. Also notice that when the

1

components have the form Z (s,r.) = r.Z.(s) (e.g. RLC circuit elements)
af. J J J

then - (r)gi(a) forms a diagonal block of JF(.) which is independent

of r. Thus the Jacobian associated with the tableau fault diagnosis

equations has an elegant simple sparse structure which compares

favorably with the "ugly" structure of the Jacobian in the composite

approach (equation 3.3 in Chapter 1I).

4. An Example

The example presented below is the same example which was presented

in Chapter 2 (figure 7). Besides illustrating the use of the fault

diagnosis equations in the CCM context this will provide a basic

comparison of the two approaches. Such a comparison will illustrate the

relative ease with which the fault diagnosis equations are solved as

well as the simplicity in computing the Jacobian necessary for the

Newton-Raphson iteration. Also the Jacobian will illustrate the sparse

structure shown in equation 3.3. Finally a brief comparison of the

performance of algorithms based on each approach will be presented.
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Recall, then, the folLowing CCM equations from the example

presented in Chapter 2

G
1

1(s)7 al Cs)7
0

b2 (s) SC2  a2 (s)

b3 (s) 0 63 (3(S) (4.la)

b4 (s) G4  a4 (s)

a1 (s)" 11(s)7

a2(s) 1 0 -1 0 2 0

a3(s) 0 1 0 b 3(s) +  u(s) (4.1b)

a(s) 0 0 0 0 b(S) 1

0 (s)

I(S)r

[1 (S) o a i~ b2(s) "'(.c

L,(SL 1 0 oj b( .j u(s)(

b (s)

In addition to the information provided in equation 4.1 the tableau

approach requires a right inverse for L and a basis for the null space

of L21. These can be computed very efficiently using singular value

decomposition techniques E153 such as those found n IMSL [163 or

LINPACK[173. In this example L is small enough to compute the
21

foLLowing by inspection.

* ~ .. * -
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LR 11](4.*2)
LO 0

00

V= [1 v2] 0= (4.3)

Now suppose the same two reaL test frequencies are used: s1  1 and

s2 = 2. Let u(s1) = u(s2) = 1 and Let the output measurements be:

y(s : [ and yMN(s 2 )[] (4.4)

If the above information is substituted into the fauLt diagram

equations (equation 3.1) the foLLowing set of non-Linear simuLtaneous

equations resuLt:

2

-1 S1() ~ (1 +

10 0 1 1
2CT

63 0- 0 = 0 (4.5a)K10 1 0G 4  1 0 =1()0

2Z U1

L i=
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-I IT 1 (2)-m(2)+ ~7

21 0 0 1 1
2 4 4 0(.b

G 0 -1 1 -0 (.b

6 1 1 1 (2) 0

C2(2)LJ

Equations 4.5 consists of eight independent equations in eight unknowns,

1 6 tx = (a 1 (1),* 2(1),a1 (2), 2 (2),G61, 'F 4)

To soLve equation 4.5 using the Newton-Raphson scheme,[ JFX W)(X k - xk) W F(x W) (4.6)

r requires the foLLowing Jacobian matrix.
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-1 0 0 0 2 0 0 01 1

1 0 0 0 1 (1)-c 2 (1)+ j 0 0

0 -1 0 0 0 0 0

1 0 0 0 0 0 01
- I _ . . . . . (4.7)

JF(x) = 3
0 0 0 0 00

'C0-2 -2- 0 *1( 2
)-a2( 2 )+ Z 0 0

2
1 11

0 0 0 -1 0 0 0

0 0 1 0 0 0 0 1

The partition on the matrix in equation 4.7 emphasizes the sparse

structure for the Jacobian presented in equation 3.3 A potential

disadvantage of the sparse matrix tableau formulation should be noted at

this point. Although the Jacobian in equation 4.7 is sparse the number

of non-zero entries is not small enough to provide any obvious advantage

over the transfer function matrix approach in memory requirements to

store the Jacobian. It remains to be seen if this short coming is

intrinsic to the sparse tableau approach or if it may be circumvented by

somehow exploiting the regular structure of the Jacobian (equation 3.3).

Although the sparse tableau formulation produces a set of fault

diagnosis equations for this example (equation 4.5) which are equivalent

to the equations generated by the composite transfer function matrix

approach (equation 5.6 of Chapter 3) there are several important

differences which give the tableau approach numerical advantages. First

the sparse tableau formulation does not require the computation of a

transfer function matrix and hence the equations describing the circuit
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are much easier to develop. In particular the inverse of the matrix

(I-Z(s,r)L1 1) is not needed. Second the polynomial order of the fault

diagnosis equations in the sparse tableau formulations does not increase

with the size of the system as the equations in the composite transfer

function matrix approach do. In many applications (e.g. RLC circuits)

the sparse tableau form of the fault diagnosis equations will be

quadratic.

One final comparison which should be noted is the performance of

the Newton Raphsons iteration scheme as applied to the two different

approaches. The basis for the comparison is two FORTRAN programs

executed on a VAX 11/780 minicomputer. The first program uses the

Transfer Function matrix approach and the second uses the Sparse Tableau

approach. Both approaches were applied to the example presented in this

and the previous chapter except that a single complex test frequency (s

- jl) was used instead of two real test frequencies. (A discussion on

the use of complex test frequencies will be presented in the next

chapter.) TabLe 1 is a summary of the comparison which lists the number

of iterations required by each scheme to find the given parameter vector

using the nominal value (all parameters equal to unity) as a first guess

for the Newton Raphson iteration.

The information in Table 1 indicates that for the example used the

Tableau equations converge faster. In ona case the Transfer Function

Matrix equations failed to converge. These results certainly indicate

that further study of the numerical properties of the tableau fault

diagnosis equations is warranted.
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+0 + +1 C+

v0 4 b 2 T V

0- -

Figure 7. Circuit to Illustrate the use of the Fault Diagnosis Equations.
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5. Summary and Conclusions

The sparse tableau formulation produces a set of fault diagnosis

equations equivalent to those of the composite transfer function matrix

approach but they are much easier to compute and potentially easier to

solve. The development of the Sparse Tableau approach however is far

from complete and before any final conclusions are made on its merits

many aspects of the approach remain to be investigated. Among these

are:

(1) The extension of the measure of testability from the transfer

function matrix approach to the tableau approach;

(2) The investigation of test frequency selection in the sparse

tableau context;

(3) The development of a method for test point selection;

(4) A more detailed comparison of the solution algorithms of the

two approaches;

(5) The investigation of the modification of the Sparse Tableau

Solution ALgorithm to exploit the quadratic order which

characterizes the tableau equations in many cases;

(6) Application of the sparse tableau equations to the diagnosis

of a relatively large example (more than 30 components)

The first item and some aspects of the second form a major part of the

next chapter of this report.

I
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Number of Iterations

Solution Vector Sparse TabLeau Transfer Function

(rI,r2,r3,r4 ) Approach Matrix Approach

(2, 1, 1, 1) 1 4

(3, 1, 1, 1) 1 4

(4, 1, 1, 1) 1 5

(5, 1, 1, 1 1 (soLutions diverged)

(1, 2, 1, 1) 3 3

(1, 3, 1, 1) 3 4

(1, 4, 1, 1) 3 5

(1, 5, 1, 1) 3 5

(1, 1, 2, 1) 1 4

(1, 1, 3, 1) 1 4

( 1, 4, 1) 1 5

(1, 1, 5, 1) 1 6

(1, 1, 1, 2) 1 1

(1, 1, 1, 3) 1 1

(1, 1, 1, 4) 1 1

(1, 1, 1, 5) 1 1

TabLe I

Comparison of Sparse Tableau and Transfer Matrix Approaches

.L _
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CHAPTER 4

CURRENT RESEARCH IN THE TABLEAU APPROACH

1. Introduction

This chapter contains a collection of results stemming from recent

research into the Tableau Approach to fault diagnosis 19J. These

include a discussion of the Newton Raphson iteration applied to

overspecified equations, a test for diagnosability in the Tableau

context, bounds on test frequencies and the presentation of several

examples.

2. Newton-Raphson Iterations and the Non-Square Jacobian

In all previous discussions of the solution of the nonlinear

equation F(x) = 0 the underlying assumption was that F(x) mapped Rn

into Rn. In this case the Newton Raphson iteration step

JF x(k))(x(k
+ l) - x(k) - F(x ) (2.1)

a unique solution for (x (k+l ) - x (k)) when the Jacobian J F (x (k)) is

non-singular. In many cases the fault diagnosis equation will be a

mapping from Rn into Rm where m~n. To see why this occurs recall the

tableau equations from Chapter 3:

Ii
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F~x W ~ (2.2)

where Mi a Ci s = ~s)

(ii) x =cot -lC-.22*

Ciii) f (r) = (s.,r) I-V3

L. ii V si + a,(si)1
Civ) gjC~a =-------------------I

(v) 0 . = b C s )

In the case of reaL test frequencies (compLex test frequencies are dis-

cussed Later in the chapter), FWx: D C R N+pq*RM and

J Cx k ) cR C14q)xCN+pq)

where Mi N = dim Cr)

(ii) p = dim (a i)p i = #2..q

Ciii) M = row dimension of ZUs.,r)

(iv) q = the number of test frequencies

Since N, p, N and q are aLL integers it is not necessariLy true that:

N + pq = Mq (2.3)

If equation 2.3 hotds the soLution of equation 2.1 proceeds using any of

the many accurate numericaL techniques avaiLabte for inverting the

square non-singuLar Jacobian, J F(x M.
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Under the diagnosabiLity criterion to be deveLoped Later in the

chapter, a system for which JF(*) does not have fult coLumn rank is not

guaranteed to be diagnosabLe and therefore the usuaL techniques are not

directLy appLicabLe. This situation is characteristic of a Lack of

sufficient measurement data for diagnosis. For the underspecified case

it is necessary to augment the avaiLabLe data by adding test

frequencies, providing more test outputs, or assigning known or assumed

vaLues to a subset of the parameters. Assuming however, that JF(x Wk )

has fuLL coLumn rank the onLy other possibLe reLation for the dimensions

of JF(X (k) is

N+pq < Mq (2.4)

A simpLe exampLe wiLL iLLustrate the nature of the Newton Raphson

iteration when inequaLity 2.4 hoLds (JF(.) has more rows than coLumns).

Suppose F(x): D C R2 . R3 is defined as

x + x2

F(xX 2  = x 3 (2.5)
ll x2  2

12 + x2 "2

The point (1,1) is a soLution to the equation F(x) = 9, x = (xlx 2)t.

The Jacobian, JF(xl,X2) 2 is:

F.'x
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JF(xl z 2 2x (2.6)
12xi 2x2]

tLet the starting point for the Newton Raphson iteration, be (2,2)

Equation 2.1 evaLuated at the first iteration of this example becomes:

[L2  4] 5 (2.7)

where

2]
1  (1) 21

Since the vector -[ 4 5 63t is not contained in the space spanned by

the "column vectors" [4 2 4] and [1 4 43t equation 2.7 is incon-

sistent.

How then is the Newton-Raphson iteration step solved when the

Linearized equations are inconsistent? A reasonable approach to provide

a solution to equation 2.1 when it is inconsistent is to find

(k+l) (k) ax -x = h such that

IIJF(x (k) )h + F(x (k )112 (2.8)

is minimized, where 11.112 is the Euclidean norm. This "least squares"

problem is readily solved using singular value decomposition techniques

[153 available in many computer subroutine Libraries such as



54

LINPACKE173. To see why such a scheme is reasonable suppose F():

DC Rn D Rm and m < n. Consider the TayLor expansion of F(x*) about the

point x where F(x*) = e.

F(x*)= F(x) + JF(x)(x * - x) + C (2.9)

The term c represents the effect aLl the higher order terms of the

expansion. RecaLL from the derivation of the Newton Raphson scheme

(Section 4 of Chapter 2) that c is assumed to be smaLL enough to be

disregarded. Before doing that decompose F(x) and e into orthogonal

components in the foLLowing manner:

F(x) = F(x)C + Fx)1  (2.10a)

C = c + e (2.10b)

where the superscript C denotes the projection onto the column space of

JF(X) and the superscript i denote the projection onto the orthogonal

complement of the column space of JF(X). Substituting equation 2.10

into 2.9 yields:

e = F(x)C + F(x) + J F (x* - x) + C+ E
L

Since those terms which Lie in the column space of J F x) are orthogonaL

to those which Lie in its orthogonal complement, equation 2.11 can be

decomposed into two equations:

F(x) C + J F (x* - x) + C (2.12a)

-
-i
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= F(x) + (2.12b)

(C I C i
Since e e + C i where e and e are orthogonal then

1I612 = II1C l i II If 16112is small then Ie Cll, and Ie 1112
Cmust also be small. Neglecting the term e in equation 2.12a leads to

the following iteration step:

F (x(k) )(x R +1) - x(k) = F(x(k))C (2.13)

Equation 2.13 is simply the Newton Raphson step used earlier except the

right hand consists of only that part of -F(x(k )) which lies in the

column space of J F (x(k)). Not only is equation 2.13 consistent but it

is mathematically equivalent to the "least square" problem of equation

2.8.

One would expect that equation 2.13 has convergence properties

similar to the Newton Raphson iteration when F: D C R * Rn . To

illustrate this a simple "attraction theorem" for equation 2.13 will be

presented Later in this chapter. Intuitively, however, as the estimate
(k)

x approaches the solution point the Linear term of equation 2.9

becomes more accurate causing I16ll2 to decrease. This implies that

Ile 112 and Ie C112 must also decrease since ci and e are orthogonal

components of e.

3. Diagnosabillty

The purpose of this section is to develop a test to determine under

what conditions it is reasonable to attempt to solve the Tableau fault

diagnosis equations (Equation 2.2). Unlike the Matrix Transfer Function

Equations the Tableau equations have the ambiguity unknowns, =,

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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i=1,2,..,q in addition to the parameter vector, r. Because the

objective is to identify the parameter vector r, computing the a 's may

seem unnecessary. The role of the these auxiliary unknowns is to

"unfold" the fault diagnosis equations from RN where r lives (as in

other approaches) to the larger dimensional space, RN+p q, where x lives.

In RN the fault diagnosis equations are highly nonlinear. In RN+pq the

equations are often quadratic, and the data of the end of Chapter 3

supports the conjecture that solving for the larger dimensional x is

preferable to solving for r directly. See Table 1 of Chapter 3, page

49.

Like the fault diagnosis equations in the Transfer Function Matrix

Context (equation 2.7 of Chapter 2) the solvability of the tableau

equations (equation 2.2) is based on the existence of an isolated

solution (Section 3 of Chapter 2). For the tableau equations however

the issue is confused by the presence of the auxiliary unknowns, Ii" i :
1,2,...,q. For example suppose x R Npq x* = (*, ,..., ,r is a

solution to equation 2.2. Suppose furthermore that for every 6 R,

> 0, there exists a vector h c RN+pq , with 'h''2 > 0, such that

x + ah is also a solution. Clearly in this situation x is not an

isolated solution. Now suppose the vector h in the above situation

always has the form h = (hl,h 2 ,...,hq,0). In other words even though

the solution x is not uniquely specified by equation 2.2 the subvector,

r, is uniquely specified. If such a situation were possible a criterion

of solvability, which required that the solution x* be isolated in order

to completely specify r, might be too restrictive. The objective of the

next few paragraphs is to show that such a situation will not occur and
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thus permit the criterion of an isolated solution to be used as the

basis for a definition of diagnosability.

Recall that the tableau fault diagnosis equations are based on

measurements yM (s) in response to inputs u(si), i = 1,2,...,q. Using

the transfer function matrix,

S(sr) = L22+ L2 1 ['-Z(sr)L1
- 1 Z(s,r)L1 2  (3.1)

the measurement can be expressed in terms of the parameter vector

directly as:

y = L22 + L 21[-Zlsir)l L11  Z(sr)Ll2 u(si) (3.2)

for i = 1,2,...,q. The family of equations in equation 3.2 share the

same properties as the fault diagnosis equations of the Transfer

Function Matrix approach. In fact the input u(si) and si' i = 1,2,...,q

can be chosen so that equations 3.2 correspond exactly to the Transfer

Function Matrix fault diagnosis equations (equation 2.6 of Chapter 2).

The concern that basing a criterion for solvability of the Tableau

Fault diagnosis equation (equation 2.2) on the existence of an isolated

solution can now be dispelled with the following theorem:

Theorem 3.3: The vector r is an isolated solution of equations 3.2 if

and only if there exist auxiliary vectors a." i = 1,2,...,q such that

* * * * *tx = (ii,...,Pq ,r ) is an isolated solution of equation 2.2. The

proof of theorem 1 requires the following Lemmas.

Lemma 3.4: If r* is a solution of equation 3.2 then there exist unique*
* 1 1 p2, ... q, such that x* z * ,*...,a,r*)t is a solution to-S=i (S =-1 q,,.,,sc htx
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equation 2.2.

Proof of Lemma 3.4: The proof is by construction. Since r is given it

may be used in the tableau equation (equation 2.1a of Chapter 3) to

simulate the system. Now suppose that the test frequencies, si,

i = 1,2,...,q, are neither circuit/system poles nor component poles. In

this case equation 2.1a of Chapter 3 is well defined and can be solved

uniquely for b(si), I = 1,2,...,q. Denote these solutions b*(si) o

i = 1,2,...,q. From equations 2.8 of Chapter 3:

= b* (s.) - bo(S i) i = 1,2,...,q. (3.5)

By construction the right hand side Lies only in the column space of V.

This implies that

RankEV3 = Rank[ I b*(si)- b0 (s id (3.6)

and therefore solutions i = 1,2,...,q, of equation 3.5 exist. Since

V has full column rank these solutions are unique. Furthermore the

construction insures that the vector x* A ... 'a'r satisfies

equation 2.2.

Q.E.D.

Lemma 3.7: If x*= (*,12,...,q,r*)t is a solution to equation 2.2 then

r *is a solution to equation 3.2.

Proof of Lemma 3.7:

Since x is a solution to equation 2.2, the vectors r and

i = 1,2,...,q, satisfy

I..,

lHi 1 I III-' .L
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L a 0(s )

[Z~1 ~b (sJ (3.8)

LJ

Recall that

b =S -R K s LU

bo(S.) 2 L2 1[y (S.)- L2 2u(i) ]  (3.9)

and

a0 (s i ) L1 1 b0 (s.) + L1 2 u(s ) (3.10)

Multiplying out equation 3.8 and substituting equation 3.10 yields:

Z(si,r*)L11[b (si) + vl] Z(S ,r*)L 1 2u(si) - [bo(s) + = el3.11)

Solve for b0 (s ) + Vi

bo(s1 ) + V t1Z(sir)LI J(s,r*)L12usi (3.12)

Multiply on the left by L and recall that the columns of V span the

null space of L21. Hence

L21b0 (s) - L21[I-Z(s.,r*)L1 1]-1Z(s,r*)L12u(si) (3.13)

FinalLy substitute equation 3.9 into 3.13 to obtain:

(s) i -{L2 2 + L211-Z(si,r*)L, 1 ]-1Z(si,r*)L1 2> u(si) (3.14)

i = 1,2,...,q for which coincides with equation 3.2.

Q.E.D.
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Proof of Theorem 3.3:

Part 1 - "only if"

Suppose x )t is not an isolated solution of

equation 2.2 but r is an isolated solution of equation 3.2. Since x

is not isolated, for any arbitrarily small 6 > 0 there exists another

solution R = (Ij,...,_,)t such that 0 a x*-£I 2 < 6. Now

according to Lemma 3.7 F must also be a solution to equation 3.2 and

furthermore r * F (If r* F then by Lemma 3.4, =- = " i =1,2,...,q

which contradicts x # R.). Since r and F are corresponding components

of x and 2 respectively then 0 < lix*-Rll 2 < 6 and r* * f imply that

0 < lir* - F11 2 < 6. But 6 can be chosen arbitrarity small which

implies F becomes arbitrarily close to r* implying r* is not an isolated

solution to equation 3.2. This contradicts the assumption that r is

isolated.

Part 2 - "if"

Now suppose r is not an isolated solution of equation 3.2. Use r

in Lemma 3.4 to construct a solution to equation 2.2. Denote this

S(* t
solution x = , ..., ) and assume that x is an isolated

solution to equation 2.2. From the construction in Lemma 3.4 the i

i = 1,2,...,q and hence x = r) are continuous functions of

r. Now select an F and construct the corresponding R. From the

property of continuity for any c > 0 there exists a 6 > 0 such that

whenever r*- 2 < . Since r is not an isolated

solution the F can always be chosen to be a solution as well.

Consequently from Lemma 3.4 R must be a solution to equation 2.2. Since

€ is arbitrary, in any open neighborhood of x* it is possible to find
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another solution 2. This contradicts the assumption that x is

isolated.

Q.E.D.

Lemma 3.4 and 3.7 and Theorem 3.3 clearLy establish the equivalence

of the Fault Diagnosis equations in the Tableau Form with those in

transfer function matrix form and make the following definition

possible.

Definition 3.15: A circuit/system modeled by equation 2.1 of Chapter 3

is said to be "DIAGNOSABLE" if and only if there exist real test

frequencies, si, and corresponding test inputs u(si), i =

with q finite, for which a solution to equation 2.2 exists and is an

isolated solution.

With respect to the above definition the terms DIAGNOSABLE and

DIAGNOSABILITY will be used in the context of the tableau approach to

avoid confusion with the measure of testability defined in the transfer

function matrix context. ALso the test frequencies, si, are not

necessarily distinct. For example a system with two inputs could be

diagnosable with q=2 where sI = 5, u(s1) = (1,O)t and s2 = 5,

tu(s2) (0,1)

The next theorem provides an expLicit test for diagnosabiLity.

Theorem 3.16: Suppose a circuit/system is characterized by a parameter

vector r. Let x be a solution to equation 2.2 which includes the

subvector, r. Then the circuit/system is diagnosable for the parameter

vector, r, if there are sufficient test frequencies, si, and

corresponding inputs, u(si), i = 1,2,...,q, such that JF(x) has full

column rank.

I
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Proof: Recall that in the tableau fault diagnosis equation, F(x) = 6,

the nonlinear function F: D C RN +pq . R* q where Mq > N+pq. Since the

Mqx(N+pq) Jacobian matrix has full column rank it must have an

(N+pq)x(N+pq) submatrix, J x(s), which is non-singular. Define 9:

N+pq . N+pq to e
D C R R to be a subvector of F whose entries are the entries

of F corresponding to the rows of J (x). Clearly if x satisfies

F(x) = 8 it must satisfy F(x) = e. Since J (s) is non-singular the 19-

verse Function Theorem insures that x must be an isolated solution of

f(x) = 6. The vector x must Likewise be an isolated solution of

F(x) = 0 and therefore definition 3.15 is satisfied.

Q.E.D.

To be of any practical use the fact that JF(O) has full column rank

at some specific solution point must infer that it has full column rank

elsewhere. This is important for two reasons. First, the Newton-

Raphson iteration scheme requires that JF (x) have full column rank to

uniquely solve the Newton-Raphson step for a sequence of estimate xk .

If at any point there is no unique solution the iteration scheme could

not proceed. Second, it would be reassuring to know that when a

circuit/system is designed to be diagnosable for some nominal parameter

vector r, it will still be diagnosable should the parameter vector

change due to aging or failure of the components.

In practice the use of the Newton-Raphson iteration scheme requires

that JF(x) have full column rank almost everywhere. In this context al-

most everywhere means everywhere except in a Lower dimensional algebraic

variety E93. If this is true then whenever the algorithm encounters a

"bad" value for x an arbitrarily small perturbation of x
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will yield a value from which the iteration can proceed. The following

theorem shows that this is indeed the case:

Theorem 3.17: Suppose x e RN+pq and J (x*) has full column rank then
F

JF(X) has full column rank for almost all x c R

Proof: If J (x*) has full column rank then there is an N+pq by N+pqF

submatrix, h(x*), such that det[M(x*)] * 0. Since every entry of JF (x*)
F

is either a constant or a linear combination of the elements of x*, this

determinant is a polynomial in x . Now consider the polynomial

det[M(x)]. It is not zero at x = x* and therefore is not identically

zero. The zero set of this polynomial is an algebraic variety of R
N+ pq

of dimension no larger than N+pq-1 and contains all points where JF(x)

is NOT full column rank.

Q.E.D.

The question still remains: Can the parameter vector change to make

a diagnosable circuit non-diagnosable? Diagnosability is defined only

for those points x e RN+pq which are possible solutions to equation 2.2

and according to lemmas 3.4 and 3.7 this is an N dimensional subspace of

RN+pq . Clearly measure over RN' pq is not appropriate to this situation.

Since the solution space is isomorphic to RN the measure over RN is used

in the following:

Theorem 3.18: Suppose a circuit/system is known to be diagnosable via

Theorem 3.16 for parameter vector r *. Then it is diagnosable for almost

all r c R
N

Proof: By Theorem 3.16 test frequencies exist such that J F (x has full
* *

column rank. (Note: x is determined uniquely from r as per Lemma

3.4.) If JF(X) is evaluated only over the solution space of equation 2.2

_________________ i
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it may be considered a function of r only, since the is I =

-i are functions of r. JF can be expressed explicitly as a function of r

by replacing the term EL11 V.i + ao(si)3 in expression 3.4b of Chapter 3

as follows:

llVci + a(si = [- -L12u(s) (3.19)

LLZi 12)

Now all entries of J F(r) are constants, polynomials in r, or ratios of

polynomials in r. Because J F (r*) has full column rank, k. there is a k

by k minor M(r*) such that det M(r*) is defined and is not zero. Now

consider the parameter vector r 0 r*. The determinant of M(r) can be

written as a ratio of polynomials in r:

P1lCr)

Det[M(r)] =- (3.20)

Since M(r) is not zero and defined at r polynomials pl(') and p2 (.) are

not identically zero. JF (r) has full column rank everywhere except

possibly over the zero sets of pl(.) or p2 (.), which are algebraic

varieties in RN and hence so is their union.

Q.E.D.

The discussion thus far has required real test frequencies. The

most likely test signal in fault diagnosis testing, however, is a

sinusoidal signal which is equivalent to using a complex pair of test

frequencies. It is appropriate therefore to illustrate how the fault

diagnosis equations are affected by the use of complex test frequencies.

When the si = j i, i = l2,...,q are complex, the fault diagnosis

equations simply become complex vector equations but since r is
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generally real it is convenient to use real arithmetic. To do this it

is necessary to convert the fault diagnosis equation to an equivalent

set of real equations. Equation 2.2 becomes:

ReEF(xRe)3 = e

ImCF(xRe)3 = e

where Re[ ] and Im[ 3 denote real and imaginary parts respectively. The
Rh+2pq

unknown vector XRe R is defined:

XRe Im~ a where a (3.21)

r

The Jacobian JF(xRe) has the form:

rgRetF3 R 9RetF

J (x~= 3 mF i~] pmF (3.22)
F F(Re' =almCF31 a~mCF3 a 1 C.22

g[i o ;I[7 ar]

Like the Jacobian in the real test frequency case, JF(xRe) is sparse and

each block has a diagonal or block diagonal structure. In Light of the

above discussion it is possible to state the following test:

Corollary 3.23: (to Theorem 3.16): A circuit characterized by parameter

vector, r, is diagnosable if there are complex test frequencies,

si = jwl and corresponding inputs, u(si), I = 1,2,...,q, such that

JF(XRe) has full column rank.

nib
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Q.E.D.
Proof: SpeciI -"e of Theorem 3.16.

This Last test is significant because a single sinusoidal input

embodies two test frequencies, ±jw, and thus fewer input-output

measurements are required.

4. Test Frequencies

The use of Theorem 3.16 or corollary 3.23 requires the selection of

appropriate test frequencies. Presently no method is known to make this

selection in an optimal manner. Nevertheless it is possible to place

some simple bounds of the number of test input/frequency combinations

necessary to satisfy the conditions of Theorem 3.16 and its corollary.

The bounds developed here are applicable to complex test frequencies and

greatly simplify the use of corollary 3.23 in determining

diagnosabiLity.

Theorem 4.1 (lower bound): Suppose a circuit/system has the following

characteristics:

i) N real parameters

ii) Dim~null[L2 13) = p,

iii) The test frequencies are si and test inputs are u(si), and

i = 1,2,...,q.

iv) The row dimension of Z(o,-) is 14

The minimum number of test Inputs/frequencies, q, required to make the

circuit/system diagnosable is

N (
w s 2(M-p) i 4.2

where the square bracket indicates "Least upper-bounding integer."
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Proof: For complex frequencies it is convenient to consider a set of

equivalent real scalar equations since the parameter vector r is real.

4 Thus q complex test frequencies result in 2Mq equations in N+2pq

unknowns (the ai may be complex but r is not). In the best case alL

equations are independent. Hence 2Mq >N+2pq which implies

2CN-p)

Q.E.D.

Note: Implicit in the above proof is the fact that M must be

greater than p in order for q to be positive and finite. Intuitively,

if the dimension of ambiguity at any single test frequency is not

strictly Less than the number of scalar equations generated by each test

frequency, no choice of test frequencies could possibly resolve it.

Theorem 4.3 (upper bound): Consider the same circuit/system as Theorem

4.1. If it is diagnosable the maximum number of test inputs/frequencies

necessary is N.

Proof: Each Ai the terms f (rWg 1 (a) - B. 0 in equation 2.2 consists

of N complex scalar equations in N+p unknowns. N unknowns corresponding

to the parameter subvector r are common to each set. Converting to an

equivalent set of real equations this yields 2M equations in N+2p

unknowns (again r is real). Therefore the first test input/frequency

produces N+2p unknowns and each subsequent measurement introduces 2p

more. Clearly if each such set of 2M equations contributes 2p

independent equations to the entire set there could be no Locally unique

solution, whereas if each contributes 2p+1, a Locally unique solution is

possible. Since the circuit/system is diagnosable by hypothesis then
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the worst case (requiring the most test frequencies) is 2p+1 independent

equations per test frequency. In this case q must satisfy:

q(2p+l) < N+2pq and q ( N. Since q=N is the minimum integer which

satisfies the worst case this must be the most test frequencies

necessary.

Q.E.D.

For a given circuit is now possible to choose test frequencies and

determine if the choice renders the circuit diagnosable for some nominal

set of parameters. After a circuit is found to be diagnosable the

Newton-Raphson iteration scheme can be used to solve for the actual

values for those parameters from measurements taken at the selected test

frequencies.

5. Nonlinearity of the Fault Diagnosis Equations

An extremely important special case form of the component transfer

function matrix arises when

Zi(s,r i) = ri Zi(s) (5.1)

In this case each of the product terms of the Tableau form of the fault

diagnosis equations is affine (21] and the components of F(x) are always

quadratic polynomials in x, regardless of the number of components in

the system. This is not the case with the Transfer Function Matrix form

of the Fault diagnosis equations (equation 2.6 of Chapter 2). Each

entry of equation 2.6 of Chapter 2 has the form:
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Pkn(r)mk -p =U 0

where mk is the measurement of one entry of the transfer function matrix

and PkW(r) and Pkdr) are polynomials in r. The ratio pk(r)/Pkd(r) is

a scalar transfer function from the system input to the system output

associated with the entry of the transfer function matrix to which the

measurement, mk, corresponds.

As the size of the system/circuit increases the degree of the

polynomials, Pkn(r) and Pkd(r), will generally increase. A simple

approach to see why this occurs is to form the directed graph which is

equivalent to the CCM equations and then use Mason's gain formula [20)

to make some general observations about the nature of Pkn r) and Pkd(r)

as the number of components of the circuit in question increases.

A directed graph is easily constructed from the CCN equations by

assigning to each component a directed branch with weight r Zi(s),

i = 1,2,...,N. Thus each branch weight is a first degree polynomial in

r. The vertices of each of these branches represent the component's

input and output. The graph is completed by connecting the component

inputs and outputs and vertices representing the system inputs and

outputs with directed branches whose weights correspond to the non zero

entries of the L.. (connection matrices) in such a way that the13

appropriate conservation laws are satisfied. Figure 8 is an

illustration of a graph constructed in such a manner. The graph is

based on the CCN equations for the example circuit from Chapter 2

(equations 5.1, 5.2 and 5.3 of Chapter 2).
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Figure 8.Graph of example circuit.
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Before starting Mason's gain formula the folLowing definitions

associated with the use of graphs are necessary (20]:

Path gain - The product of the weights of the branches of a

directed path in the graph.

Cycle gain- The product of the weights of all branches in a

directed circuit of the graph.

Let

t= sum of cycle gains of all directed circuits in the graph;

t2  sum of products of all vertex-disjoint (non-touching) directed

circuits tak.i two at a time;

tk = sum of products of all vertex-disjoint directed circuits taken

k at a time;

A=1-t1 + t2 - t3 + "'" + (-1)
q tq

where q is the maximum number of vertex-disjoint directed

circuits in the graph;

P k = path gain of the kth directed path from output to input vertex

for which the transfer function is to be computed;

Ak : the value of A for that part of the directed graph having no

vertices in common with the path associated with P

Notice that the expressions for A, Ak and Pk are all polynomials in r.

The scalar transfer function can now be computed using Mason's gain

i1 formula [203 as:

1 PPkn(r) Z PkAk
=Pdr W- (5.3)

_.1
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Consider each of the terms A, Ak and P as the circuit/system and

hence its graph increase in size. The paths from input vertices to

output vertices will tend to get Longer and the number and size of the

directed circuits wilL Likewise increase. rhus the polynomial degree of

A, Ak and Pk and consequently of pkn(r) and Pkd(r) will increase in

proportion to the size of the circuit/system.

The degree of the components of the Tableau Equation on the other

hand remains fixed (quadratic) as the system/circuit size increases.

Therefore each term has a constant second derivative with respect to r

and higher derivatives vanish. A solution algorithm which exploits this

easily computed second derivative information should offer greatly

improved performance over the Newton-Raphson scheme discussed earlier.

6. Convergence of the Newton Raphson Iteration

At the beginning of the Chapter a form of the Newton-Raphson

iteration step (equation 2.13) was derived to solve F(x) = 0, where the

nonlinear function F: D C Rn . Rm and m > n. The objective of this

section is to show that the iteration of equation 2.13 is Locally

convergent. An iteration is said to be Locally convergent if the

iteration will converge to the solution point, x*, whenever the initial

estimate, x (0 ), is sufficiently close to x*. The following definition

and theorem from [193 are the basis for achieving this objective.

Definition [193: Let G: DC Rn * Rn . Then x* is a point of attraction

of the iteration, x(k+ l) = G(x(k)), k 0,1,..., if there is an open
4

neighborhood S of x* such that S c D and, for any x0 c S, the iterates

{ (k)x all lie in D and converge to x .
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Ostrowski Theorem [193: Suppose that 6: D C Rn + Rn has a fixed point

x e int(D) and is Frechet differentiable at x*. If p(G (x*)) < 1 then
*(k+M)M

x is a point of attraction of the iteration x = G(x k)). Where

i) x* is a fixed point of G if x = G(x*)

(ii) G is the Frechet derivative of G.

(iii) p(A) is the magnitude of the Largest eigenvalue of A (known as

the spectral radius).

To establish the local convergence of equation 2.13, use the

following:

Theorem 6.1: Suppose there is a point x* R n, such that F(x*) = 8,

where F: D C Rn , Rm and m > n. Suppose also that in a neighborhood of

x the function, F, has a continuous Frechet derivative, JF, and J has

full column rank. Then x is a point of attraction for the iteration

x (k1 X k [JF(~)J~)] J(x (k)F (F Jx (k)M (6.2)

Proof: Define G: DC Rn. Rn as

6(x) = x -[(x)JF(x] 4 (x)F(x) (6.3)

Notice that x* is a fixed point of G - i.e.

x =G(x) (6.4)

For convenience note that a left inverse of JF(x) denoted [ F (x) -L  143

has the form,

[(x)] [jT x)j,(x)]- 4 (x) (6.5)

and notice that

-'-/
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1i Fx L J F(x) =1 (6.6)

To apply the Ostrowski Theorem it is sufficient to prove that 6 (x*)=

in which case the spectral radius is zero. Equivalently show that

Lim 1 l(x) - G=x* 0 (6.7)

To prove equation 6.7 holds, evaluate the argument of the Limit opera-

tion using equation 6.3 and note that F~x*) =e. In particular

- 1~ 1lG(x)-G(x*)ll = 1 I(-* x)-L xj (68
Ilx-x *I 11 1 2 I1x~x*) - [JFx F~)12 (68

Next use equation 6.6 and the fact that, F(x) = F(x) -F(x )which pro-

duces

I - I j(x) - G(x*)11 2=
llx-x*112

Fand [JFx)(xx* - [Fx - F(x*]] (6.9)

4 [J~~x]L IJF(x) x) 11x - ~*]12  (.0
11*x 11
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where

F (x max JF(x) - hIIZ11 h I h 12= 1

is the spectral norm of the matrix JF(x)-L. Add and subtract JF(X*)(x -

*F

X) from the Last term of equation 6.10 and use the triangle inequality

to obtain:

1 -1Gx G(x)I112 <
llx-x*l12

[ Fc(x] 0L I(F(x) - j F(x*))(x-x)l112lx-x*ll 2

I IJF (x)(xx) - (F(x)-F(x) 112  ~ (6.12)
llx-x*ll2

Since J F(x) is continuous

Lim 1 IJF(x) - JF(x*)3(x-x) 11 2 =0 (6.13)

* llx-x*Fl
2

and by definition of the Frechet derivative

Lim tIJF(x*)(x-x*) F(x) -F(x*)J1 2  0 (6.14)
• IIx-x*11 2

I ,

Hence G (x) = 0.

Q.E.D.

II ~ ~~~ ~~ II .I .I .......... ...... "
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This establishes the validity of the Least squares solution for the

Newton Raphson iteration.

This section concludes the theoretical development of the tableau ap-

proach to date. The next section will demonstrate the application of this

theory to several examples.

7. Fault Diagnosis Examples

The purpose of this section is to illustrate the use of the fault diag-

nosis equations by applying them to several example problems. Each example

includes its CCN characterization as well as nominal and actual parameter

values. Currently no method exists in the context of the tableau approach

for optimal test point selection. In each example the selection of test

points took place via the trial and error procedure below:

(1) Model the circuit/system in terms of the CCM.

Note: This includes the use of frequency and impedance scaling. As in the

simulation process the scaling enhances the numerical variations in the nom-

inal values of the parameters from component to component. Such scaling is

always possible and requires only that actual measurements undergo a reverse

scaling before their entry into the solution program.

(2) Select candidate test outputs (usually functional outputs).

(3) Select a minimum set of test input/frequency combinations (via

Theorem 4.1.

Note: AlL the examples presented here are single input circuits/systems.

Selecting test input/frequency combinations amounts to selecting distinct

test frequencies. In all cases u(si)x=ljO, ic1,2,...,q.

(4) Test the rank of J F(x) (see Theorem 3.16) to determine if the

circuit/system is diagnosable, where x 0 is the nominal parameter

vector.

kk1
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(5) If the diagnosability test fails, include an additional test

input/frequency combination, if the test succeeds go to step 8.

(6) Repeat steps 4 and 5 until N input/frequency combinations are used

(see Theorem 4.3).

(7) Select additional test outputs and return to step 3.

(8) Use the resulting test outputs and test input/frequency combinations

to generate the tableau fault diagnosis equations (equation 2.2).

The solution of the resulting equations proceeds via a computer imple-

mentation of the Newton-Raphson iteration step with the nominal parameter

values and corresponding ambiguity vectors (ai, i=l,...,q) serving as the

first estimate of the solution. This "diagnosis program", written in FOR-

TRAN uses the subroutine LLSQF from IMSLE163 to determine the least squares

solution to the Newton-Raphson iteration (equation 2.1). Sparse matrix tech-

niques were not utilized. The program executed on a VAX 11/780 computer.

Each example concludes with a summary of the performance of this solution

algorithm. The next chapter introduces a modification to the solution algo-

rlLhm which exploits the quadratic form of the tableau fault diagnosis equa-

tions and several of the examples presented here will also demonstrate the

performance of the modified algorithm.

Example 7.1: The first example is based on the AC equivalent circuit of

the single stage transistor amplifier in figure 9 selected from reference

[63. The component connection equations are shown below: (Note: The input

voltage for the dependent source is defined differently than it was in E6]

making Z(s,r) diagonal and changing one entry in L
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Figure 9. Amplifier model for example 7.1.
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Cl

v usd IA

VcI /sCc £2

Vc2  IN1R 8

I = IEva

' R E E C V
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1/%c VR

IR Lj(7-2)
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0 00000011 0110 VC

I 0 0 0 0 0 0 1 0 1 0 1 1 0 VR

x xSI 0 0 0 0 0 0 1 -1 1 -1 0 0 V R
!Ii I

1 C 0 0 0 0 0 0 0 0 0 1 1 1 0 V C
I C~ 0 0 0 0 0 0 0 0 0 D 0 1 0 V C
C2 2

VR -1 0 0 0 0 0 0 0 0 0 0 0 1 RB

V -1 -1 -1 0 0 0 0 0 0 0 0 0 1 R
R E 'RE

Vc = 0 0 1 0 0 0 0 0 0 0 0 00 1 C
w

.C -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1CE
E

V 0 0 1 0 0 0 0 0 0 0 0 0 1
RB 9mV RVc -1 -1 0 -1 0 0 0 0 0 0 0 0 1 1 Rc

C

V RL -1 -1 0 -1 -1 0 0 0 0 0 0 0 1 R L

V 0  -1 -1 0 -1 -1 0 0 0 0 0 0 0 1 V!

I C 1 0 0 0 0 0 1 1 0 1 0 1 1 0

L E J L0 0 0 0 0 0 1 0 1 0 0 0 01

(7.3)

The right inverse for L21 computed using the LINPACK £17) routine SSVDC is:

L

. ,

? ..!r~g



81

-. 25 0 0

-.25 0 0

0 0 0
1 -.25 0 0

-.25 0 0

-R 0 .333 -.333,!L = 0 5(7.4)
21 0 0 .5

0 0 0

0 0 .5

0 0 0

0 .333 -.333

0 .333 -.333

A basis for the nuLL space of L2, in matrix form is:

110000000

-1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 -1 0 1 0 0 0 0 0

0 0 0 -1 0 0 0 0 0

V 0 0 0 0 0 0 0 0 1 (7.5)

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 1 0 0 ]

0 0 0 0 0 0 0 1 -1

0 0 0 0 0 0 0 -1 0

For this circuit =N12 , p=9 and q=2. ALL parameters have nominaL vaLues

of unity. For test frequencies s, jl.4 and 2 = j2 the nominaL vaLues for

the ambiguity vectors, a, and , are:

I-
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.72545 E-01 -.42669E+0'

.26209E+00 .28641 E-01

.92251 E-01 .28133E-01

.18192E+O0 -.38153E-01
a= -.39387E-01 + I .12915E+00 (7.6a)

.64166E-01 -.98703E-01

.92251 E-1 .28133E-01

.16710E+00 .11155E+00

.26166E+00 .21033E+O00

-.86316E-01 -.48784E+OI
.29425 E+00 .80346E-01
.10092E+00 .10641E-01
.17635E+00 -.11167E-01

_2 -.21282E-01 + j .20184E400 (7.6b)
.35081 E-01 -.13916E+00
.10092E+00 .10641 E-01
.19156E+00 .97295E-01
.31972E-0 .21512E+O0

Next the parameter vector r was changed to:

r = (2. 1.2 .9 .9 1.1 .8 1. 1.1 2. .9 1.2 1.1)t (7.7)

The smaLL variations from unity represent normal production variations for

"good" components while the Larger variations for the first and ninth com-

ponents represent faikures. This perturbed parameter vector r (representing

an actual circuit under test) was used to compute the following test out-

puts:

14-.18 , -o [ .9, .o,
y"( =24554E+00 + 4 "5346+00 (7.8a)

.3848E-o .15117E+00

~i
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[ .62142E-i .6744lE-Or
y = .41992E+00 1  .3 6804 0 7.8b)

.10101E400J .19389E+00

These test outputs and the nominal data were the input to the diagnosis pro-

gram for determination of the actual parameter values. The program used

twelve Newton-Raphson iterations and 31.5 seconds on the VAX 11/780 to com-

pute the estimates of the circuit parameters, all within .11% of the actual

values.

Example 7.9: This example consists of the op-amp circuit shown in Fig-

ure 10. The op-amp/feedback resistor combination forms a "voltage-follower"

which is extremely insensitive to changes in the actual value of the feed-

back resistor. Intuitively, the individuaL diagnosis of this resistor's

value will be numerically unstable. it is therefore reasonable to combine

the op-amp and feedback resistor as a single component for the purposes of

fault diagnosis and model them as a voltage controlled voltage source. The

resulting circuit with parameters scaled, appears in Figure 11. The test

points for this example are a result of the trial and error process dis-

cussed at the beginning of the section. The CCM equations as well as LR
21

and V are given below:

Ib rI  a1

b2  r s 0 a2

3  3 a3  (7.10)

b 4  0 r4 /s a4

b r a5
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Figure 10. Op-amp circuit for example 7.9.
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Figure I]. Model of op-amp circuit for example 7.9.
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a1  0 1

az 0 1 1 0 (T l
-1 0 0 0 -1 1

a3 -1 0 0 -1 0 b2  1

a4 0 0 1 0 0 b3  + 0 u (7.11)

0 0 0 0 1 b4  0a 5 0 0 0 0 1 b4 0

Yl 0 1 1 0 0 b5  0

y2

S0]
0 .5

L7 R 0 .5 (7.12)21 [ j
0 0

1 O.
0 -1 0

V = 0 -1 0 (7.13)

0 0 1

For this example M=N=S, p=3 and q=2. The test frequencies are

s1  j .5 and s2 =j1.5. As in the previous example the parameter vector,

r •used to compute test outputs was a perturbation of the nominaL, r . The
O

values used for r* and r 0are

ro z (1 1.5 .5 2.5 1) t (7.14)
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r (2.2 .75 .90 2.2 1)t (7.15)

The nominal values for the ambiguity vectors are:

[-.10588E j .37647E+l

.= -19412E+00 [ .23529E-01i (7.16a)

.82353E00 -.70588E4OOJ

2 .92496E+O9 .6263Ed
= | .28630E+0+ [ .47961E+00 (7.16b)

L-7732E+O0 -. 29364E+°°J

The measurements corresponding to actual parameter values are:

4 .66358E+Ol .63077E+uu'
y [ .80518E-OIJ + L .21054E+J (7.17a)

-. 14926E+09 + -. 38510E+O9

(s2 .38978E+O0 22644E+ (7.17b)

The Jacobian for this probLem has dimension 20 x 17 and therefore the

solution algorithm requires the use of the modified Newton-Raphson iteration

discussed at the beginning of this chapter. This is accomplished by the

IMSL163 routine LLSQF. The diagnosis program required five iterations and

1.73 seconds on the VAX 11/780 to find r to .1% accuracy.

ExampLe 7.18: Suppose the circuit of ExampLe 7.9 is cascaded to form

the multistage filter shown in Figure 12. Diagnosis of this circuit re-

quired test points between stages of the amplifiers. The reason is that the

individual stages are isolated so that using output measurements only, the



88

+

++

U+

++

+

Fiur 2.Mltsag ilerfr xmpe7.8



89
-4

changes in a component in one stage are indistinguishable from similar

changes in the corresponding component in another stage. The CCM equations,

L-RL21 , and V for the circuit of Figure 12 are given below. They present an

excellent example of the sparseness typical of the matrices of the CCM.

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0
-1 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
-1 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

a(s)= 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 b(s) + 0 u(s)
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 -1 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 -1 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

(7.19)

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 a 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

y(s)= 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 b(s) + 0 u(s)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

(7.20)
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r2$

I 4/
r3 i

r5
r6

ras

b(s)7 r9 /s a(s)
Ila

r12s rl, 13/

r1 5
r161s

rl 8

(7.21)

0 0 0 0 0 0 0 0
.5 0 0 0 0 0 0 0
.5 0 0 0 0 0 0 00 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 .5 0 0 0 0 0
0 0 .5 0 0 0 0 0
0 0 0 0 0 0 0 0

-R 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 00 0 0 0 .5 0 0 00 0 0 0 .5 0 0 00 0 5 0 0 0 0 00 0 0 0 0 1 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0
Lo 0 0 0 0 (7.22)

0000 500
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"1 0 0 0 0 0 0 0 0 O"

0 1 0 0 0 0 0 0 0 0
0-1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

0 0 0 0-1 0 0 0 0 00 0 0 0 0 1 0 0 0 0
V = 0 0 0 0 0 0 0 0 0 0

a 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0-1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 a 0 1

0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 a0o

(7.23)

For this example test frequencies are s= jl and s = j2. The nominal and

soLution parameter vectors are:

ro= (2. 1.5 .5 2.5 1. 2. 1.5 .5 2.5 1. 2. 1.5 .5 2.5 1. .7 1. 2.)t

(7.24)

r = (2.1 1.4 .5 2.5 1. 1.4 1. .5 2.4 1. 1.8 1.6 .45 2.6 1. .8 1.2 1.8)

(7.25)

The nominal values for the ambiguity vectors are:

:1
_JI

t1
j
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.10265E+O1" .60177E+O0

.11504E+00 .27434E+00

- .30973E+00 -.35398E+00

-.10494E+0 -.54977E+0

.61477E-01 -.12570E+0

. l = -.29368E-01 + j  .21928E+00 (7.26a)

-.16210E+00 .20743E+00

-.63535E-01 .17170E-01

.86718E-01 -. 57523E-01

-. 82515E-02 -. 22160E-01

.10413E+01 .20143E+O(f

.22993E+00 .13207E+00

-. 10214E+00 -. 38005E-01
-.98704E-01 -.60149E-01

-.18465E-01 -.22227E-01

22 .89878E-02 + j  .77634E-02 (7.26b)

.77955E-02 .98947E-02

.10413E-02 .29720E-02

-.62294E-03 -.11345E-02

-. 13895E-03 .56466E-04

The measured outputs corresponding to the actual parameter values are:

.48041 E+O .28688E+OL

-. 29928E+00 -. 36303E+00

.90992E-01 -.29353E+00

S -.22825E+00 .23811E+00Ylqsl)= -21237E+00 .j  58070E-01(.2a

.15498E+00 .11242E-02

.53761E-01 .16759E-01

.96770E-01 .30167E-01
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.49466E+Cd .978239-01

-.10323E+00 -.40269E-01

-.58126E-01 -.580636-01

.12314E-01 .20497E-01
y (s 2) = .47561E-02 +.3 .13267E-01 (7.27b)

-.51815E-03 -.24983E-02

-.51469E-04 -.95655E-03

-.92643E-04 -.17218E-02

The diagnosis program determined aLL components of r* to .02% accuracy.

This required six iterations and 31.2 seconds on the VAX 11/780.

Example 7.18 ilustrates the fact that it may be extremely costly in

terms of test points (8 required by that example) to determine the value of

every individual component. In many instances individual components will be

part of a functional block which is replaceable as a unit. in this situa-

tion it is merely necessary to determine if the functional block is operat-

ing properly. The next two examples illustrate this type of tradeoff.

Example 7.28: Figure 13 depicts a twelve component system. Suppose y

is a functional output which makes it a natural choice as a test output as

well. From the trial and error procedure described at the beginning of the

section one finds that the identification of all the parameter values re-

quires four additional test points, through The CCM equations, R
y5r e 21

and V below reflect this choice of test points:
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0 0 -1 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0
1 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0 0

a(s)= 0 0 0 0 0 1 0 0 -1 0 0 0 b(s) + 0 u(s)
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 -1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 -1 0 0

(7.29)

= 0 0000000

(7.30)

rI  r

r 1 2 /

(7331

3 r4
r5

0 5 0 0/0

0 -. r a(s)

rr1
rr/S
r121

(7.31)

0.50 0 0 00 -.50 0 0

05 0 0. 0 05 0 0 0

21 0 0 0.5 0 0
*10 0 0 -. 5 0

0 0 0 0 0
0 0 0 0 .5

.30 0 0 0 -. 5
0 0 0 0 0

(7.32)



1 0 0 0960 0,

0 0 0 1 0

0 000 00 -1 0
V= 0 0 1 0 0 0 0

(7.*33)

Let the nominaL and actual parameter vectors, r 0and r respectively, be the

following:

r=C 0 01.252-1 .67 .9 .12 1.1-.1 I)t (7.34)

r (.9 .1 1.11 1.8 -.8 .71 1 0 1.33 1.05 -.05 10)

(7.*35)

The nominal values for the ambiguity vectors are:

.16508EOE .53947E-0f

.60717E+00 .92653E-01

-.52401E-02 -.10637E+00
*1~ .20590E400 + j -. 23701E+00 (7.36a)

-.37403E+00 -. 12865E+00
.2391.9E+00 -.30979E-01

-. 5349.00 -.30480E+OO0
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.28803E+O .93115E-O1

.61570E+O0 .23719E+00

.42695E-01 -.11083E+00

= .20456E+00 + j -.29017E40 (7.36b)

-. 19671E+00 -. 12473E400

.98183E-01 -. 14411E-02

-. 30755E+00 -. 17381 E+00

The measurements corresponding to actual parameter values are:

'.18201 E+O0" -. 76336E+00"

.34693 E+00 .92198E-01
y(s 1 )  I.52903E+00 j -.39824E+00 (7.37a)

.78978E-0)1 -. 27258E+40

.30958Eo0 -. 47566E4+O0

.45295E-0 0 .67300E .00L

N .56059E+00 [.1 5584E+00

y s .10124E+01 + j -.11559E+00 (7.37b)

.32849E+ 00 L-. 53376E+OO

The diagnosis program required onLy three iterations and 7.2 seconds on the

VAX 11/780 to determine the elements of r* to three significant digits. The

cost in terms of the number of test points is reLativeLy high (five test

outputs). In the next example the requirement for compLete identification is

relaxed causing a dramatic rnduction in test points.

ExampLe 7.38: Now suppose the components of ExampLe 7.28 permit func-

tional grouping as indicated by the dashed Lines in figure 13. If the re-

quirement to isolate faults to a specific component is relaxed to the iden-

tification of a faulty group it becomes possible to eliminate test points by

t1
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transforming each group of three components into individual components. For

example the components, Zl, Z2, and Z3, combine to form the single com-

ponent, Z1 where:

K1Z1 (K1 "I - l-'T(7.39)

and

r1
I = Ir (7.40a)

S 1  (7.40b)1-ri r 3 + r 2 r 3

If the remaining components have simiLar transformations the twelve parame-

ter system of figure 13 becomes the eight parameter (4 component) system of

figure 14. For the system of figure 14 the system output y1  at four dis-

tinct sinusoidaL test frequencies is sufficient to identify the parameters,

K. and j, i=1,..,4 and hence isolate the fault to a component group. The

CCM equations for the system are:

10 "

a2  0 1 b2
a3  1 0 b + u (7.41)

a4 I1 00 b N
y L 1 0 b L41

=Emo
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Figure 14. Interconnected functional units for example 7.38.
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0 0 0

b2  2 a2

b2 K3 a3  (7.42)
0 0 0

b T2 a4
4 K4

L r4 +T

The parameter vector to be identified is:

t

r = (K1 ,K2 pK3 ,K4 ,rTI, 2 ,T3 ,T4 ) (7.43)

The test frequencies are s1 = jil, s 2 = j3, s3 = j6 and s4 = jlO. The nomi-

naL and actual parameter vectors are:

r0 = (1 2 .9 1.1 .8 1.5 .5 1)t (7.44)

r = (.9 1.8 1 1.05 .9 1.4 .75 .9 5)t (7.45)

The nominal values for the ambiguity vectors are:

I.4789805EOl -.6195888E-O1

S.374027?E+O + j .1286507E+00 (7.46a)
.5349754E 00 L.3048038E+00

.9605259E-Of .3421843E-Of

.1289079E+00 + j .8045628E-01 (7.46b)
.. 1911152E+00 .9222372E-01
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-A

3 .2229586EO + [.740639E-i
. .5140581E-01 + j-.2090679E-01 (7.46c)

-6668712E-0 -1981173E-O1j

S-.2164005E-0 + il-.5590791E-0 I  (7.46d)

L-.2659364E-01 L-.5010533E-02J

The measurements corresponding to actual parameter values are:

y =(s I -.1820130E-00 + j.7633615e+O0 (7.47a)

y M = .7491249E-01 - j.5557519E+00 (7.47b)

y (s3) = .4131773E-01 - j.3430093E+00 (7.47c)

y (s ) = .1806347E-01 - j.2193868E+00 (7.47d)

The program to solve this example was executed on the VAX 11/780 and re-

quired 9 iterations to determine r* to approximately 1X. The Larger number

of iterations necessary for this example versus the previous is most Likely

a result of (1) the greater nonlinearity in the tableau equations due to the

form of the component (equation 7.39) and (2) from the drastic reduction in

test points making the extraction of parameters more difficult.
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8. Concluding Remarks

This completes the presentation of the preliminary development of the

tableau approach which, as pointed out earlier, offers superior convergence

and conditioning properties over the equivalent composite formulation. The

five examples demonstrate the successful application of the results intro-

duced thus far, including the determination of diagnosabiLity of a

circuit/system, the calculation of the number of required test frequencies

and the actual solution of the fault diagnosis equations. Additional advan-

tage for the tableau formulation remains to be gleaned from the knowledge of

the quadratic form of its fault diagnosis equations. Details of the exploi-

tation of this information as well as a demonstration of the resulting im-

provement in convergence follow in the next chapter.

-!

.4I

39J

, , . ,, . , • , i I I I I I.
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CHAPTER 5

EXPLOITATION OF THE QUADRATIC FORM

1. Introduction

This chapter introduces some improvements to the Newton algorithm for

solving the Tableau Fault Diagnosis Equations (equation 2.2 of Chapter 4)

which apply when these equations are quadratic. Recall that the Tableau

Fault Diagnosis Equations have a quadratic form whenever Z.i(s,r. r .Z.i(s).

In the case of electrical networks this form of component transfer function

suffices for modelling resistors, inductors, capacitors, and dependent

sources. This means that the quadratic form of the Tableau Fault Diagnosis

Equations is valid for any circuit modelled by an interconnection of the

above components. This is an extremely Large category of possible circuits.

The significance of this special form is that it represents specific

information about Tableau Fault Diagnosis Equations which, under appropriate

circumstances, is useful in determining their solution. This chapter

addresses two ways of exploiting this information. First the quadratic form

of the Tableau Fault Diagnosis Equations allows an exact characterization of

their behavior along a search direction. In particular this

characterization provides a simple means of precisely establishing the point

along the search direction at which the norm of the nonlinear function,

FWx, is a minimum. Use of this "minimum point" as the next estimate of the

solution is designed to guarantee and streamline the convergence of the

Newton-Raphson iteration. Second, this special form may permit the
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determination of a better search direction by allowing a two term

approximation of the Hessian of the function, IIF(x)11 2
2"

2. Multidimensional Quadratic Functions

Before proceeding with a simple example of a set of quadratic

equations, it will be useful to draw an analogy between the problem of

solving F(x) = 0 and a functional minimization problem. Recall the square of

nnorm, II I, is a functional which has a unique global

minimum at 6 so the problem of finding x such that F(x*) = 0 is equivalent

to finding x* such that [133

IIF(x*)I1llJIF(x)1I2 for all xCRn (2.1)

For circumstances which cause the Newton-Raphson algorithm to diverge, this

new perspective suggests a modification which results in a nondive-ging

algorithm E133. Namely, choose x such that

IIF(xk+l )1 2= IIF(xk+)dk)ll 2 IIFlxk)ll (2.2)

where dk satisfies: 2 k 2 -

JF(xk )dk = -F(x ) (2.3)

The vector dk is called the "search direction". This modification is based

on the "Global Convergence Theorem" which appears in Chapter 2. The

following example will illustrate how knowledge of the quadratic form

assists in the selection of A.

Consider the following problem in two dimensions:



105

rF,xylry-2x-2y+l1
Fxy) [ F(xy) L xy-2y+l J(.4)

where R2 The nonlinearity of the function, F, is the second order

term, xy. Such second order terms Likewise characterize the nonlinearity of

the TabLeau FauLt Diagnosis Equations.

Now solve F(xy) = e via the Newton-Raphson iteration method. The

Jacobian of F(x,y) is

JF(xY) = y;2 : 2 (2.5)

Assume an initial guess: []= . The next estimate of the desired

solution, I 11 is the solution of:

jx 0 [x-2.1 -F(X0 y0  (2.6)

which is equivalent to solving the pair of Linear simultaneous equations:

x + .ly = 3.3 (2.7a)

3x + .ly = 5.3 (2.7b)

To develop an understanding of the nature of the solution process

consider the following physical interpretation: Let the first component of F

define a surface as

z a Fl(xy) (2.8)
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Figure 15 is a graph of this surface with the point

z0 a F1 (x 0y) = F1(2.1,3) annotated. Consider next the pLane which is

tangent to the surface at the point Ijo, depicted in figure 16. Equation

2.?a is the equation of the Line in tie xy plane which is the intersection

of the tangent pLane with the plane z=D. In other words, equation 2.7a is

the Linear approximation of the zero set of the nonLinear function, Fl(xy)

determined as the zero set of the tangent pLane of the surface z - Fl(xy)

at the point jjo]" Of course a simiLar interpretation hoLds for the second

equation. Thus the intersection of the two tangent pLanes is the approximate

intersection of the two nonLinear equations.

The soLution to equation 2.7 is the point 2] -] To determine if

the aLgorithm may be diverging, test the condition in 2.2, i.e. determine

B2 2 2If ,,F(1,23),12 < ,,F(21.,3),I2 EvaLuating ,lF112 at these points yields:

IIF(2.1,3)11 = 2.5 IIF(1,23)11 2= 968 (2.9)

This indicates that the Newton-Raphson iteration is diverging. For this

simpLe exampLe it is very possibLe that subsequent iterations may recover

from this divergent step but in generaL, adjustment of the aLgorithm to

insure that the condition in 2.2 hoLds wiLL be necessary.

This adjustment consists of finding a vaLue for X such that

IIF(xk+Xdk)II1 < IIF(xk)II1 (2.10)

For this exampLe the search direction, do Z [23] - ril - '. The

i

desired vaLue for the next estimate of the soLution is now
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100

Figure 15. Graph of z =f,(x ,y).
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x I + (2.11)

Notice that when x = 0 the next estimate equaLs the previous and when k I

the next estimate is the Newton-Raphson estimate. The set of possibLe

values for Ixl corresponds to a Line paraLLeL to the search direction and

passing through n Figure 17 iLLustrates this set of points for the

current exampLe. in the Navid and WiLLson application of the "GLobal

Convergence Theorem" x has an initiaL vaLue of 1 (the Newton-Raphson

iterate). If the condition in 2.2 does not hold then x decreases by haLf

untiL it does 13J. Points corresponding to x = 1,.5 and .25 appear in

figure 17. TabLe 2 dispLays the results of the computation of i1F112  for

the sequence of x = 2- i for j=0,1,2 and 3.

AJ J 2

1112
1 968

.5 58.93

.25 4.363

.125 1.910

TabLe 2

Evaluation of 11F11 2 at selected points.
2

The data in tabLe 2 indicates that x = .125 wiLL satisfy the condition in

2.2. ALthough this value for A satisfies the condition, it is not optimaL in

the sense that JlFIJI is not minimized along the search direction.

KnowLedge of the quadratic nature of the TabLeau Fault Diagnosis Equations

and hence the fourth order behavior of IIF1I2 offers an easiLy impLemented

scheme for choosing this optimaL vaLue as seen in the next section.
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y

25

20-

10-
X= .25

1 2 3

.1 Figure 17. Set of Points Along the Search Direction.
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3. An ALgorithm for SeLecting X

To iLLustrate an optimal scheme for choosing ;, return to the example

in the previous section. Evaluate F(xly 1) as a function of x by

substituting equation 2.11 into the expression for F(x,y) given in equation

2.4. This produces:

F(2.1-1.1,3+20k) L-22 +'91.9 (3.1)
1 22X 2-1.3k+1.3]

Note that F is a vector whose entries are quadratic functions of X. Now
find A such that 2IF(2.1-1.1x,3. 20.k)lI1 is a minimum. Computing the

square of the norm of F yieLds the following fourth degree polynomial in A:

IIF(x 1 y1 )112 = (-22A2 +.9x-.9)2 + (-22)
2 21.3)+1.3)2

= 968k4+17.6k -15.1k -5X+2.5 (3.2)

Since equation 3.2 is a fourth degree polynomial the minimum point is the

result of solving:

dl 1F(xl y1)1 23
d2 = 3872, +52.8x -30.2-5 = 0 (3.3)

Equation 3.3 has a single reaL root at A = .12731. Thus the point

[x U + .12731 0 L5462 (3.4)

is the point along the search direction for which IIFII; is a minimum.

Evaluating F at this point gives
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I1F(1.96,5.5462)112 = 1.909 (3.5)

This process has produced a new estimate for the solution of F(x,y) 0 0 void

of the divergence problem.

The procedure for finding the optimum value for h worked very well for

the simple example. The next step in this development is to show explicitly

that it applies to the Tableau Fault Diagnosis Equations. Recall the fault

diagnosis equations presented in equation 3.1 of chapter 3, namely:

I[f(r)g Cm)-B1

Fx) = . =e (3.6)

fq gq (aq )0qJ

where

Ci) x =coLC . .. P qrJ ;

(ii) fi(r) = EZ(s.,r)I-VJ ;

(iii) g-(i) ---- ;-- and

(iv) 0i = bo(si).

Furthermore recall the assumption that Z(s,r.) = r.Z.(s).

To explicitly see that the procedure used in the simple example applies

to these equations as well, take a closer Look at the individual entries of

the nonlinear vector function, F. Let ijCx) denote the EN(i-1)+j~th

component of Fx), (i.e. FN(i l)+jx)) where i=1,2,...,q and j=I,2,...,N.

Then
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p
#*jlx) = Zj(s 1)r, E CLIlV)jkatk

p
+ Z (s.)r a (s )-E V a -b (s1 ) (3.7)

i i JO km1 ik ik oj

where

Ml) (L11V)Jk denotes the (j,k) entry of the matrix product L11V;

) ik is the k-th entry ofai;

(iii) Vik denotes the (j,k) entry of the matrix V; and
(iv) aoj(S i) and boj (s) denote the j-th entry of ao(s i) and bo(s i)

respectively.

The nonlinear terms are those with the products: r aik where i=1,2,...,q,

j-l,2,...,n, and k=l,2,...,p. CLearly then the nonlinearity in the Tableau

Fault Diagnosis Equations consists of sums of pairwise products of r. with

mik, strictly quadratic.

Now apply the modified Newton-Raphson iteration to the Tableau Fault

Diagnosis Equations in the same manner as in the earlier simple illustrative

example. As before the objective is to select the value of X such that

IIF(xk +dk ).. is a minimum and then compute x = x k+Xd k. From equation

3.7 it is apparent that with xk and dk fixed (known)

Ml) #j(xk+Xdk) is a quadratic function of X, and

(ii) IIF(xk+Xdk )112 is a fourth degree polynomial in X.

Furthermore the above is true regardless of the size of the Tableau Fault

Diagnosis Equations as Long as Z(s, r) - rj Zj (s).

This means that the following algorithm will assign the optimum value

to 1:
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Step1- Evaluate IIF(xk.Xdk)tI1- at five values of X.

Remark: Because of the form of the Tableau Fault Diagnosis Equations, this

requires matrix addition and muLtiplication only. No matrix inverses are

necessary.

Step 2- Generate a fourth order interpoLant, h(), for the data from

Step 1.

Remark: ALthough it is possible to generate the coefficients of

IlF(xk dk )Il by substituting xk +Xdk into the expression for F as in the

example above it is far simpler in a computer implementation to use steps 1

and 2 for the following reasons. First, any computer implementation of the

Newton-Raphson algorithm (e.g. the program used to solve the examples in

chapter 5) must already have a routine for evaluating the value of F.

Second, since the IIFII2 is a fourth degree polynomial in x then

h(A) = IIF(xk+Xdk )Il (3.9)

for all x (i.e. the interpolant is exact).

Step- Find the roots of the equation:

dh(A)--(--= 0 (3.10)

dhOO)
Remark: The solution to equation 3.10 is easily computed since d is a

third degree polynomial.

Step 4- Set xk equal that root of equation 3.10 for which 3.9 is

minimum.

The result of this procedure is a value for A=k which minimizes

JIF(xk-xdk)II2 along the search direction, dk. This is the optimum choice

for A made possible by the quadratic nature of the Tableau Fault Diagnosis
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Equations.

Before proceeding to an example some detaiLs of the implementation of

steps 1 and 2 deserve mention. If infinite precision were available on the

computer any five distinct points along the search direction would suffice

to uniquely determine the desired interpoLant, h(x). With Limited precision

some choices will produce more accurate results than others. Since the

solution to equation 3.10 will normally Lie in the interval C0,13 a

reasonable choice of five interpolation points is x = -.5,0.,.5,1., and 1.5.

The polynomial h(x) has the form:

4 3 2
h(X) = Y 4  + y3 3 + y2A + + YO (3.11)

Evaluation of h(X) = JjF(x k- Xk),1 at the five points mentioned above

results in the following matrix equation whose solution is the coefficients

Yip i=0,1,..,4, which uniquely specify h(A).

.0625 3.375 2.25 1.5 1. 4 h(1.5)r1,. 1. 1. 1 . Y3 hl0
0.0625 0.125 0.25 0.5 1. -f2 h(O.5) (3.12)

0. 0. 0. 0. 1: MOM.0)
0.0625 -0.125 0.25 -0.5 1 Y1 Lh(-.5)_

YOU

The matrix in equation 3.12 is a 5 x 5 Vandermonde matrix143 which is

-onsingular. Since this matrix is always the same as long as the

interpolation points are fixed the solution algorithm computes its inverse

once and then uses the inverse at each iteration to determine the

coefficients of h(A).
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4. Quadratic Form Examples

This section will illustrate the modified Newton-Raphson algorithm

(selection of ) detailed in the previous section via an example circuit

(Figure 9) presented in chapter 4.

ExampLe 4.1: The first example is exampLe 7.1 from chapter 4. ALL the

data used in this example is exactly the same as in example 7.1 except that

this time the solution to the Tableau Fault Diagnosis Equations proceeds

according to the modified Newton-Raphson ALgorithm. Recall that for this

example M=N=12, p=9 and q=2. The test frequencies are s,=jl.4 and s2=j2.0.

Determination of the solution point with an accuracy of .11% required 8

iterations and 23.3 seconds on the VAX-11/780. The solution routine is a

FORTRAN Language program using single precision arithmetic (approximately

six decimal places on the VAX). This is a substantial improvement over the

Newton-Raphson iteration (x=i) described in chapter 4, example 7.1, which

required 12 iterations and 31.5 seconds on the VAX-11/780 to produce the

same results.

Example 4.2: This example also uses the same circuit (Figure 9) as the

previous example with the exception of the actual parameter vector and

corresponding measurement outputs. For this example the actual parameter

vector is:

r = (2 1.4 .9 .7 1.5 .8 1.5 1.4 2 .9 1.2 1 .6)t (4.23)

and the test outputs corresponding to this parameter vector are

14 .- r.90831-o,

yM(jl"4) =+ + i .54699E+001 (4.4a)

.68-O1 .13866E+oo

for input u(Jl.4) a 1, and
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1206 247175E-O1 4.by 02.0) 43 137E+001 + j .o66102E+0 (4.4b)

L.4981EO1 L.18066E+00

for input u(j2.0) = 1.

The variations from unity for each of the parameter values are sufficiently

Large that the usual Newton-Raphson iteration diverges. Consequently this

problem soLution required the modified algorithm discussed in section 3.

Determination of the solution point with an accuracy of 2% required 6

iterations and 17.0 seconds on the VAX-11/780.

The examples illustrate that the modified algorithm will converge under

circumstances in which the Newton-Raphson algorithm will not. Furthermore it

is possible for the modified algorithm to result in convergence in fewer

iterations due to the optimum choice of x. Of course these conclusions are

consistent with the "Global Convergence Theorem" of Navid and Willson [133.

5. Modification of the Search Direction

The algorithm for solving the quadratic form of the Tableau Fault

Diagnosis Equations uses this quadratic information at each iteration to

determine the optimum point along the search direction for the next estimate

of the solution. The search direction used however is exactly the same as

the Newton-Raphson algorithm. In both cases the search direction for the

k-th iteration, dk, satisfies:

JF(x k)dk = -F(x ) (5.1)

The purpose of this section is to investigate the use of quadratic

information to determine of a new possibly better search direction.
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in section 2 the problem of soLving the nonLinear vector probLem,

F(x) = 9, appears recast as a the minimization of a scaLar function
IIF(x)l2 where XCRn. Let the function, h(x), be a scalar multipLe of

IIF(x)ll expressed in terms of vector muLtiplication as:

h(x) = .5 F(x)tF(x) (5.2)

where F: D C R ->Rm with m>n and t denotes the matrix transpose. The scale

factor .5 has no affect on the minimization problem but its inclusion

eliminates the factor two from the derivatives of hx). RecalL that finding

the solution to F(x) = e is equivalent to finding the value of x which

minimizes h(x). Furthermore, finding the minimum of h(x) is equivalent to

solving the nonlinear vector problem:

vh(x) = e (5.3)

where v denotes the gradient operator, i.e.

ax1

ax2

(5.4)

a
axn

Define the function G(x) as:

G(x) - Vh(x) (5.5)
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The Newton-Raphson and modified ?ewton-Raphson algorithms are valid

methods for finding the solution to G(x) = e. In both cases the search

direction at the k-th iteration is the solution to:

J(xk)dk = -G(xk) (5.6)

Expressing equation 5.6 in terms of the original nonlinear function, F(x),

produces an interesting variation on the Newton-Raphson search direction. In

order to see this take a closer Look at the Jacobian of G. If the vector

function

6(x) = coLG6I(X),6 2 (x),. . .,G n (X)J (5.7)

.COL h(x) sh(x) )h (x)"

a x 2 .... .. I n j

then J6 (x) is

G1  OG1  361

1 2 n
3G2 3G2 3G2axI  ax
1 -'2 n

JG(x) (5.8)

n n n

i T
1x I 2 xn

L.*

" " .....' -:.. .. .... .. .. .....I II J .... .L'
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2 2 2a h(x) 3 h(x) a h(x)
ax ax 1  ax 2 ax I  axaX1

2 2 2a h(x) a h(x) a h(x) 
SIx2  ax2ax2  Xnax 2

- S ' 2 h(x)

2 2 2a h(x) 3 h(x) a h(x)
rxln Zx~n n n

2

The V2 operator denotes the Hessian matrix (the matrix of second partial

derivatives.

Both the gradient, G(x) % Vh(x), and the Hessian matrix, V2h(x), have

expressions in terms of F(x) based on the definition of h(x) given in

equation 5.2. These are [223:

G(x) s Fh(x) I F(x) (5.9)

2 h(x) = F Ix JW(X) + EFk x)Hk(X) (5.10)
k1l

where Fk(x) is the k-th entry of F(x) and Hk(X) is the Hessian matrix of

Fk(x) i.e.

Hk(x) a V2FkX) (5.11)

The substitution of the identities of equations 5.9 and 5.10 into

equation 5.6 produces the foLLowing equation for the search direction:
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[[JFX tjFx) + W + Fk(X)Hk x] kdk =U d -JFxtF() (5.12)

m
Omitting the term E Fk(x)Hk(x) from equation 5.12 yields

k=l

IliFxU)tJFxIdk 2[J 
F(x) (5.13)

Solving equation 5.13 is mathematically equivalent to finding the Least

squares solution to equation 5.1 which produces the Newton-Raphson search

direction. Equation 5.12 on the other hand produces a search direction based

on a complete expression of the Hessian matrix of h(x). An algorithm based

on the use of equation 5.12 might therefore produce an improved solution

scheme for solving F(x) = e. As wilt be seen from the examples of the next

section, the procedure does not in fact produce an improved search

direction.

In general information to permit the computation of FkX)Hk (X) (i.e.
the Hk=l

the Hk) is not available and a great variet/ of schemes exist which attempt

to approximate it in some manner C223. In the case of the quadratic form of

the Tableau Fault Diagnosis Equations the matrices Hk(x) = V2Fk(X),

k=l,2,...pm are constant. Furthermore they are sparse which permit

efficient storage for use in computing

t m[FXitJFX) k+ Fk(XH
I F kFxk=lF

at each iteration. The sparseness is due to the fact that the onLy nonlinear

terms in Fk  are the products of a single component parameter, rj and the

components of a singLe ambiguity vector, li, -l1,2,...q and jmI,2,...N.
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SpecificaLly, each HNCi.l),is a (pq+N)Cmu(pq+N) symmetric matrix which has

aLL zero entries except for the (pq+i)-th row and coLumn. if rpq+j,

denotes the non-zero coLumn of 
MN(i)j then the non-zero row is r +

pq* 2,1o

rp has the form:
A1

A

A2

r i= (5.14)
pq+j,i

Aq

K

where

i) Ak equaLs the p dimensional zero vector if k~i and

Ak 2 Z(s t) (L 1V)J, if K 9 i;

(ii) (L11V)
3 is the transpose of the j-th row of L1 1V; and

(iii) eN is the N dimensional zero vector.

The results of the implementation of this modified search direction

method are discussed in the next section.

6. Examples Usin Modified Search Direction

As with the other solution algorithms discussed, the implementation of

the solution algorithm utilizing the modification of the search direction is

a FORTRAN program compiled and executed on the VAX 11/780. The program also

employs the interpolation procedure to determine the optimum point along the

search direction.

ExampLe 6.1: Since example 4.1 has aLready served as a basis for

comparison between the Newton-Raphson algorithm and the modified Newton-

Raphson algorithm discussed in section 3 it is appropriate to attempt to

solve this example utilizing the modified search direction. UnfortunateLy
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the results were discouraging. After 250 iterations, the program utilizing

the modified search direction failed to converge to a solution point. The

foLLowing conjecture may serve as an explanation of this unsatisfactory

performance. RecalL that the modified search direction algorithm is

actually a procedure to solve Vh(x) = 8. This condition is satisfied not

only at the desired solution point but at all Local maxima and minima and at

saddle points. in fact it is possible that some of the points satisfying

Vh(x) = 0 are not even isolated. By construction the modified search

direction is influenced by alL such points on the surface described by

(x). The existence of non-isolated solutions or even clustered isolated

solutions to vh(x) = e would explain the program's inability to converge to

a solution point, even an incorrect one.

There is perhaps a very Limited set of situations in which use of the

modified search direction is appropriate as the next example illustrates.

Example 6.2: Like examples 4.1, 4.2, and 6.1, this example employees

the circuit of example 7.1 of chapter 4. ALL of the necessary data appears

there except for the following changes:

(I) The number of test frequencies,q, is three, and these are

s= - j.4, s1 = jl.2, and s, a j2.;

Remark: This example uses one more test frequency than actually required.

The additional measurement data serves to improve the condition of the

problem.

(ii) The actual parameter vector is:

r c coL(2.1 1.5 .4 1.2 2 .7 .8 1.1 .95 1.2 .95 1.3) (6.3)

(iii) The nominal values for the ambiguity vectors are:

1-----------
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.26648E OL -.12054E+O(J

.37331E+00 -.11670E+00

.35839E-01 .43052E-01

.2838E+00 -.43458E-01
_(s1) : -.17221E-01 + i .14336E-01 (6.4a)

:54351E-01 .17588E-01
.35839E-01 .43052E-01
.31641E-01 .97458E-01
.92483E-01 .14854E+O0

.12731E+06 -.38703E+OC

.25786E+00 .14630E-02

.86319E-01 .34182E-01

.18968E+00 -.49547E-01
S 2 = -.41018E-01 + j .10358E+00 (6.4b)

.72697E-01 -.80235E-01

.86319E-01 .34182E-01

.15326E+00 .11745E+00
o 23754E+00 .20604E +00

-.86316E-0" -.48784E+OLt
.29425E+00 .80346E-01
.10092E+00 .10641E-01
.17635E+00 -.111678-01

._(S3 = -.21282E-01 + j .20184E800 (6.4c)
.35081E-01 -.13916E+00
.10092E+00 .106418-01
.19156E+00 .97295E-01

.31972E+00 .21512E+00

and

(iv) The outputs corresponding to the actuaL parameter vector are:

r-.2617aE-0 31569E-02
y (s) = | .31077:E-01 j .18086E+0 (6.5a)

L..21118E-01j L..57588E-OIJ
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N.20198E-O1 .17205E-O1

S(s 2 : 20012: + j .45228E+00I (6.5b)
.64193E-01 .12685E+00

N-.78967E-Oc" .48328E-O1
y (s3) - .41679E+O01 j .59643E+001 (6.5c)

L .11324E+OOJ .17160E+O00

The solution of the resulting fault diagnosis equations was computed

twice. The first solution program used the modified Newton-Raphson algorithm

developed in section 3. This program required 11 iterations and 66.13

seconds on the VAX 11/780 to compute the solution to .07% accuracy. The

second solution program was identical to the first except that the first

iteration used the modified search direction discussed in section 5. This

solution, computed to .07% accuracy, required 8 iterations and 58.07 seconds

on the VAX 11/780. In this case a modest improvement resulted from the use

of the modification to the Newton-Raphson search direction.. Experience

indicates that such improvement does not occur in generaL.

7. Sunmary

CLearLy a notable distinction of the use of the TabLeau FauLt Diagnosis

Equations is the ability to exploit their special structure in the solution

process. The most significant observation about this structure is that the

equations are quadratic when Z(s,r1 ) a rtZ 1 (s). This means that it is

possible to compLeteLy characterize the behavior of IIF1I1 in a search

direction with a simple interpolation scheme. The interpolation scheme

combined with the Newton-Raphson search direction produces a soLution

algorithm which converges under conditions in which the Newton-Raphson

algorithm does not or is faster under conditions when it does.
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Although the attempt to develop an improved search direction based on

the use of a compLete expression for the Hessian of 1IFI1 2 was unsuccessfut

it does provide additionaL information into the nature of the Tableau FauLt

Diagnosis Equations. In generaL the presew-e of extrema and other points

for which vh(x) a 9 precludes the use of this method. In fact this should

serve as a caution to the appLication of this method to the solution of any

set of simultaneous nonlinear equations.

I .1
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